Katana VentraIP

Werner Heisenberg

Werner Karl Heisenberg (pronounced [ˈvɛʁnɐ kaʁl ˈhaɪzn̩bɛʁk] ; 5 December 1901 – 1 February 1976)[2] was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics, and a principal scientist in the Nazi nuclear weapons program during World War II. He published his Umdeutung paper in 1925, a major reinterpretation of old quantum theory. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics".[3][a]

"Heisenberg" redirects here. For other uses, see Heisenberg (disambiguation).

Werner Heisenberg

Werner Karl Heisenberg

(1901-12-05)5 December 1901

1 February 1976(1976-02-01) (aged 74)

Elisabeth Schumacher
(m. 1937)

7 (incl. Jochen and Martin)

Heisenberg also made contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He was also instrumental in planning the first West German nuclear reactor at Karlsruhe, together with a research reactor in Munich, in 1957.


Following World War II, he was appointed director of the Kaiser Wilhelm Institute for Physics, which soon thereafter was renamed the Max Planck Institute for Physics. He was director of the institute until it was moved to Munich in 1958. He then became director of the Max Planck Institute for Physics and Astrophysics from 1960 to 1970.


Heisenberg was also president of the German Research Council,[4] chairman of the Commission for Atomic Physics, chairman of the Nuclear Physics Working Group, and president of the Alexander von Humboldt Foundation.[1]

Early life and education[edit]

Early years[edit]

Werner Karl Heisenberg was born in Würzburg, Germany, to Kaspar Ernst August Heisenberg,[5] and his wife, Annie Wecklein. His father was a secondary school teacher of classical languages who became Germany's only ordentlicher Professor (ordinarius professor) of medieval and modern Greek studies in the university system.[6]


Heisenberg was raised and lived as a Lutheran Christian.[7] In his late teenage years, Heisenberg read Plato's Timaeus while hiking in the Bavarian Alps. He recounted philosophical conversations with his fellow students and teachers about understanding the atom while receiving his scientific training in Munich, Göttingen and Copenhagen.[8] Heisenberg later stated that "My mind was formed by studying philosophy, Plato and that sort of thing"[9] and that "Modern physics has definitely decided in favor of Plato. In fact the smallest units of matter are not physical objects in the ordinary sense; they are forms, ideas which can be expressed unambiguously only in mathematical language".[10]


In 1919 Heisenberg arrived in Munich as a member of the Freikorps to fight the Bavarian Soviet Republic established a year earlier. Five decades later he recalled those days as youthful fun, like "playing cops and robbers and so on; it was nothing serious at all;"[11] his duties were restricted to "seizing bicycles or typewriters from 'red' administrative buildings", and guarding suspected "red" prisoners.[12]

Academic career[edit]

Göttingen, Copenhagen and Leipzig[edit]

From 1924 to 1927, Heisenberg was a Privatdozent at Göttingen, meaning he was qualified to teach and examine independently, without having a chair. From 17 September 1924 to 1 May 1925, under an International Education Board Rockefeller Foundation fellowship, Heisenberg went to do research with Niels Bohr, director of the Institute of Theoretical Physics at the University of Copenhagen. His seminal paper, "Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen" ("Quantum theoretical re-interpretation of kinematic and mechanical relations") also called the Umdeutung (reinterpretation) paper, was published in September 1925.[28] He returned to Göttingen and, with Max Born and Pascual Jordan over a period of about six months, developed the matrix mechanics formulation of quantum mechanics. On 1 May 1926, Heisenberg began his appointment as a university lecturer and assistant to Bohr in Copenhagen. It was in Copenhagen, in 1927, that Heisenberg developed his uncertainty principle, while working on the mathematical foundations of quantum mechanics. On 23 February, Heisenberg wrote a letter to fellow physicist Wolfgang Pauli, in which he first described his new principle.[29] In his paper on the principle,[30] Heisenberg used the word "Ungenauigkeit" (imprecision), not uncertainty, to describe it.[2][31][32]


In 1927, Heisenberg was appointed ordentlicher Professor (professor ordinarius) of theoretical physics and head of the department of physics at the University of Leipzig; he gave his inaugural lecture there on 1 February 1928. In his first paper published from Leipzig,[33] Heisenberg used the Pauli exclusion principle to solve the mystery of ferromagnetism.[2][14][31][34]


During Heisenberg's tenure at Leipzig, the high quality of the doctoral students and post-graduate and research associates who studied and worked with him is clear from the acclaim many later earned. At various times they included Erich Bagge, Felix Bloch, Ugo Fano, Siegfried Flügge, William Vermillion Houston, Friedrich Hund, Robert S. Mulliken, Rudolf Peierls, George Placzek, Isidor Isaac Rabi, Fritz Sauter, John C. Slater, Edward Teller, John Hasbrouck van Vleck, Victor Frederick Weisskopf, Carl Friedrich von Weizsäcker, Gregor Wentzel, and Clarence Zener.[35]


At 25 years old, Heisenberg gained the title of the youngest full-time professor in Germany and professorial chair[36] of the Institute for Theoretical Physics at the University of Leipzig. He taught lectures that physicists like Edward Teller and Robert Oppenheimer would attend[36] who would later work on the Manhattan Project[37] for the United States.


In early 1929, Heisenberg and Pauli submitted the first of two papers laying the foundation for relativistic quantum field theory.[38] Also in 1929, Heisenberg went on a lecture tour of China, Japan, India, and the United States.[31][35] In the spring of 1929, he was a visiting lecturer at the University of Chicago, where he lectured on quantum mechanics.[39]


In 1928, the British mathematical physicist Paul Dirac had derived his relativistic wave equation of quantum mechanics, which implied the existence of positive electrons, later to be named positrons. In 1932, from a cloud chamber photograph of cosmic rays, the American physicist Carl David Anderson identified a track as having been made by a positron. In mid-1933, Heisenberg presented his theory of the positron. His thinking on Dirac's theory and further development of the theory were set forth in two papers. The first, "Bemerkungen zur Diracschen Theorie des Positrons" ("Remarks on Dirac's theory of the positron") was published in 1934,[40] and the second, "Folgerungen aus der Diracschen Theorie des Positrons" ("Consequences of Dirac's Theory of the Positron"), was published in 1936.[31][41][42] In these papers Heisenberg was the first to reinterpret the Dirac equation as a "classical" field equation for any point particle of spin ħ/2, itself subject to quantization conditions involving anti-commutators. Thus reinterpreting it as a (quantum) field equation accurately describing electrons, Heisenberg put matter on the same footing as electromagnetism: as being described by relativistic quantum field equations which allowed the possibility of particle creation and destruction. (Hermann Weyl had already described this in a 1929 letter to Albert Einstein.)

Bavarian Order of Merit

Prize[150]

Romano Guardini

Grand Cross for Federal Service with Star

(Civil Class)

Knight of the Order of Merit

Elected an International Member of the in 1937,[169] a Foreign Member of the Royal Society (ForMemRS) in 1955,[1] and an International Honorary Member of the American Academy of Arts and Sciences in 1958.[170]

American Philosophical Society

Member of the Academies of Sciences of Göttingen, Bavaria, Saxony, Prussia, Sweden, Romania, Norway, Spain, The Netherlands (1939), Rome (Pontifical), the Deutsche Akademie der Naturforscher Leopoldina (Halle), the Accademia dei Lincei (Rome), and the American Academy of Sciences.[172]

[171]

1932 – "for the creation of quantum mechanics, the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen".[53]

Nobel Prize in Physics

1933 – of the Deutsche Physikalische Gesellschaft

Max-Planck-Medaille

Heisenberg was awarded a number of honors:[2]

Werner Heisenberg Die Möglichkeit der technischer Energiegewinnung aus der Uranspaltung G-39 (6 December 1939)

Werner Heisenberg Bericht über die Möglichkeit technischer Energiegewinnung aus der Uranspaltung (II) G-40 (29 February 1940)

Robert Döpel, K. Döpel, and Werner Heisenberg Bestimmung der Diffusionslänge thermischer Neutronen in schwerem Wasser G-23 (7 August 1940)

K. Döpel, and Werner Heisenberg Bestimmung der Diffusionslänge thermischer Neutronen in Präparat 38[175] G-22 (5 December 1940)

Robert Döpel

Robert Döpel, K. Döpel, and Werner Heisenberg Versuche mit Schichtenanordnungen von D2O und 38 G-75 (28 October 1941)

Werner Heisenberg Über die Möglichkeit der Energieerzeugung mit Hilfe des Isotops 238 G-92 (1941)

Werner Heisenberg Bericht über Versuche mit Schichtenanordnungen von Präparat 38 und Paraffin am Kaiser Wilhelm Institut für Physik in Berlin-Dahlem G-93 (May 1941)

Erich Fischer, Werner Heisenberg, Carl-Friedrich von Weizsäcker, and Karl Wirtz Untersuchungen mit neuen Schichtenanordnungen aus U-metall und Paraffin G-127 (March 1942)

Fritz Bopp

Robert Döpel Bericht über Unfälle beim Umgang mit Uranmetall G-135 (9 July 1942)

Werner Heisenberg Bemerkungen zu dem geplanten halbtechnischen Versuch mit 1,5 to D2O und 3 to 38-Metall G-161 (31 July 1942)

Werner Heisenberg, Fritz Bopp, Erich Fischer, , and Karl Wirtz Messungen an Schichtenanordnungen aus 38-Metall und Paraffin G-162 (30 October 1942)

Carl-Friedrich von Weizsäcker

Robert Döpel, K. Döpel, and Werner Heisenberg Der experimentelle Nachweis der effektiven Neutronenvermehrung in einem Kugel-Schichten-System aus D2O und Uran-Metall G-136 (July 1942)

Werner Heisenberg Die Energiegewinnung aus der Atomkernspaltung G-217 (6 May 1943)

Walther Bothe, Erich Fischer, Erwin Fünfer, Werner Heisenberg, O. Ritter, and Karl Wirtz Bericht über einen Versuch mit 1.5 to D2O und U und 40 cm Kohlerückstreumantel (B7) G-300 (3 January 1945)

Fritz Bopp

Robert Döpel, K. Döpel, and Werner Heisenberg Die Neutronenvermehrung in einem D2O-38-Metallschichtensystem G-373 (March 1942)

The following reports were published in Kernphysikalische Forschungsberichte (Research Reports in Nuclear Physics), an internal publication of the German Uranverein. The reports were classified Top Secret, they had very limited distribution, and the authors were not allowed to keep copies. The reports were confiscated under the Allied Operation Alsos and sent to the United States Atomic Energy Commission for evaluation. In 1971, the reports were declassified and returned to Germany. The reports are available at the Karlsruhe Nuclear Research Center and the American Institute of Physics.[173][174]

Sommerfeld, A.; Heisenberg, W. (1922). . Z. Phys. 10 (1): 393–398. Bibcode:1922ZPhy...10..393S. doi:10.1007/BF01332582. S2CID 123083509.

"Eine Bemerkung über relativistische Röntgendubletts und Linienschärfe"

Sommerfeld, A.; Heisenberg, W. (1922). . Z. Phys. 11 (1): 131–154. Bibcode:1922ZPhy...11..131S. doi:10.1007/BF01328408. S2CID 186227343.

"Die Intensität der Mehrfachlinien und ihrer Zeeman-Komponenten"

Born, M.; Heisenberg, W. (1923). "Über Phasenbeziehungen bei den Bohrschen Modellen von Atomen und Molekeln". Z. Phys. 14 (1): 44–55. :1923ZPhy...14...44B. doi:10.1007/BF01340032. S2CID 186228402.

Bibcode

Born, M.; Heisenberg, W. (1923). "Die Elektronenbahnen im angeregten Heliumatom". Z. Phys. 16 (9): 229–243. :1924AnP...379....1B. doi:10.1002/andp.19243790902.

Bibcode

Born, M.; Heisenberg, W. (1924). "Zur Quantentheorie der Molekeln". Annalen der Physik. 74 (4): 1–31. :1924AnP...379....1B. doi:10.1002/andp.19243790902.

Bibcode

Born, M.; Heisenberg, W. (1924). "Über den Einfluss der Deformierbarkeit der Ionen auf optische und chemische Konstanten. I". Z. Phys. 23 (1): 388–410. :1924ZPhy...23..388B. doi:10.1007/BF01327603. S2CID 186220818.

Bibcode

— (1924). "Über Stabilität und Turbulenz von Flüssigkeitsströmmen (Diss.)". Annalen der Physik. 74 (4): 577–627. :1924AnP...379..577H. doi:10.1002/andp.19243791502.

Bibcode

— (1924). "Über eine Abänderung der formalin Regeln der Quantentheorie beim Problem der anomalen Zeeman-Effekte". Z. Phys. 26 (1): 291–307. :1924ZPhy...26..291H. doi:10.1007/BF01327336. S2CID 186215582.

Bibcode

— (1925). . Zeitschrift für Physik. 33 (1): 879–893. Bibcode:1925ZPhy...33..879H. doi:10.1007/BF01328377. S2CID 186238950. The paper was received on 29 July 1925. [English translation in: van der Waerden 1968, 12 "Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations"] This is the first paper in the famous trilogy which launched the matrix mechanics formulation of quantum mechanics.

"Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen"

Born, M.; Jordan, P. (1925). "Zur Quantenmechanik". Zeitschrift für Physik. 34 (1): 858–888. :1925ZPhy...34..858B. doi:10.1007/BF01328531. S2CID 186114542. The paper was received on 27 September 1925. [English translation in: van der Waerden 1968, "On Quantum Mechanics"] This is the second paper in the famous trilogy which launched the matrix mechanics formulation of quantum mechanics.

Bibcode

Born, M.; Heisenberg, W.; Jordan, P. (1926). "Zur Quantenmechanik II". Zeitschrift für Physik. 35 (8–9): 557–615. :1926ZPhy...35..557B. doi:10.1007/BF01379806. S2CID 186237037. The paper was received on 16 November 1925. [English translation in: van der Waerden 1968, 15 "On Quantum Mechanics II"] This is the third paper in the famous trilogy which launched the matrix mechanics formulation of quantum mechanics.

Bibcode

— (1927). "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik". Z. Phys. 43 (3–4): 172–198. :1927ZPhy...43..172H. doi:10.1007/BF01397280. S2CID 122763326.

Bibcode

— (1928). "Zur Theorie des Ferromagnetismus". Z. Phys. 49 (9–10): 619–636. :1928ZPhy...49..619H. doi:10.1007/BF01328601. S2CID 122524239.

Bibcode

—; Pauli, W. (1929). "Zur Quantendynamik der Wellenfelder". Z. Phys. 56 (1): 1–61. :1929ZPhy...56....1H. doi:10.1007/BF01340129. S2CID 121928597.

Bibcode

—; Pauli, W. (1930). "Zur Quantentheorie der Wellenfelder. II". Z. Phys. 59 (3–4): 168–190. :1930ZPhy...59..168H. doi:10.1007/BF01341423. S2CID 186219228.

Bibcode

— (1932). "Über den Bau der Atomkerne. I". Z. Phys. 77 (1–2): 1–11. :1932ZPhy...77....1H. doi:10.1007/BF01342433. S2CID 186218053.

Bibcode

— (1932). "Über den Bau der Atomkerne. II". Z. Phys. 78 (3–4): 156–164. :1932ZPhy...78..156H. doi:10.1007/BF01337585. S2CID 186221789.

Bibcode

— (1933). "Über den Bau der Atomkerne. III". Z. Phys. 80 (9–10): 587–596. :1933ZPhy...80..587H. doi:10.1007/BF01335696. S2CID 126422047.

Bibcode

— (1934). "Bemerkungen zur Diracschen Theorie des Positrons". Zeitschrift für Physik. 90 (3–4): 209–231. :1934ZPhy...90..209H. doi:10.1007/BF01333516. S2CID 186232913. The author was cited as being at Leipzig. The paper was received on 21 June 1934.

Bibcode

— (1936). "Über die 'Schauer' in der Kosmischen Strahlung". Forsch. Fortscher. 12: 341–342.

—; Euler, H. (1936). "Folgerungen aus der Diracschen Theorie des Positrons". Z. Phys. 98 (11–12): 714–732. :1936ZPhy...98..714H. doi:10.1007/BF01343663. S2CID 120354480. The authors were cited as being at Leipzig. The paper was received on 22 December 1935. A translation of this paper has been done by W. Korolevski and H. Kleinert: arXiv:physics/0605038v1.

Bibcode

— (1936). "Zur Theorie der 'Schauer' in der Höhenstrahlung". Z. Phys. 101 (9–10): 533–540. :1936ZPhy..101..533H. doi:10.1007/BF01349603. S2CID 186215469.

Bibcode

— (1937). "Der Durchgang sehr energiereicher Korpuskeln durch den Atomkern". Die Naturwissenschaften. 25 (46): 749–750. :1937NW.....25..749H. doi:10.1007/BF01789574. S2CID 39613897.

Bibcode

— (1937). "Theoretische Untersuchungen zur Ultrastrahlung". Verh. Dtsch. Phys. Ges. 18: 50.

— (1938). "Die Absorption der durchdringenden Komponente der Höhenstrahlung". Annalen der Physik. 425 (7): 594–599. :1938AnP...425..594H. doi:10.1002/andp.19384250705.

Bibcode

— (1938). "Der Durchgang sehr energiereicher Korpuskeln durch den Atomkern". Nuovo Cimento. 15 (1): 31–34. :1938NCim...15...31H. doi:10.1007/BF02958314. S2CID 123209538. — (1938). "Der Durchgang sehr energiereicher Korpuskeln durch den Atomkern". Verh. Dtsch. Phys. Ges. 19 (2).

Bibcode

— (1943). "Die beobachtbaren Grössen in der Theorie der Elementarteilchen. I". Z. Phys. 120 (7–10): 513–538. :1943ZPhy..120..513H. doi:10.1007/BF01329800. S2CID 120706757.

Bibcode

— (1943). "Die beobachtbaren Grössen in der Theorie der Elementarteilchen. II". Z. Phys. 120 (11–12): 673–702. :1943ZPhy..120..673H. doi:10.1007/BF01336936. S2CID 124531901.

Bibcode

— (1944). "Die beobachtbaren Grössen in der Theorie der Elementarteilchen. III". Z. Phys. 123 (1–2): 93–112. :1944ZPhy..123...93H. doi:10.1007/BF01375146. S2CID 123698415.

Bibcode

— (1947). "Zur Theorie der Supraleitung". Forsch. Fortschr. 21/23: 243–244. — (1947). . Z. Naturforsch. 2a (4): 185–201. Bibcode:1947ZNatA...2..185H. doi:10.1515/zna-1947-0401.

"Zur Theorie der Supraleitung"

— (1948). . Z. Naturforsch. 3a (2): 65–75. Bibcode:1948ZNatA...3...65H. doi:10.1515/zna-1948-0201.

"Das elektrodynamische Verhalten der Supraleiter"

—; von Laue, M. (1948). "Das Barlowsche Rad aus supraleitendem Material". Z. Phys. 124 (7–12): 514–518. :1948ZPhy..124..514H. doi:10.1007/BF01668888. S2CID 121271077.

Bibcode

— (1948). "Zur statistischen Theorie der Tubulenz". Z. Phys. 124 (7–12): 628–657. :1948ZPhy..124..628H. doi:10.1007/BF01668899. S2CID 186223726.

Bibcode

— (1948). . Proceedings of the Royal Society A. 195 (1042): 402–406. Bibcode:1948RSPSA.195..402H. doi:10.1098/rspa.1948.0127.

"On the theory of statistical and isotropic turbulence"

— (1948). . Z. Naturforsch. 3a (8–11): 434–7. Bibcode:1948ZNatA...3..434H. doi:10.1515/zna-1948-8-1103. S2CID 202047340.

"Bemerkungen um Turbulenzproblem"

— (1949). "Production of mesons showers". Nature. 164 (4158): 65–67. :1949Natur.164...65H. doi:10.1038/164065c0. PMID 18228928. S2CID 4043099.

Bibcode

— (1949). "Die Erzeugung von Mesonen in Vielfachprozessen". Nuovo Cimento. 6 (Suppl): 493–7. :1949NCim....6S.493H. doi:10.1007/BF02822044. S2CID 122006877.

Bibcode

— (1949). "Über die Entstehung von Mesonen in Vielfachprozessen". Z. Phys. 126 (6): 569–582. :1949ZPhy..126..569H. doi:10.1007/BF01330108. S2CID 120410676.

Bibcode

— (1950). "On the stability of laminar flow". Proc. International Congress Mathematicians. II: 292–296.

— (1952). "Bermerkungen zur Theorie der Vielfacherzeugung von Mesonen". . 39 (3): 69. Bibcode:1952NW.....39...69H. doi:10.1007/BF00596818. S2CID 41323295.

Die Naturwissenschaften

— (1952). "Mesonenerzeugung als Stosswellenproblem". Z. Phys. 133 (1–2): 65–79. :1952ZPhy..133...65H. doi:10.1007/BF01948683. S2CID 124271377.

Bibcode

— (1955). "The production of mesons in very high energy collisions". Nuovo Cimento. 12 (Suppl): 96–103. :1955NCim....2S..96H. doi:10.1007/BF02746079. S2CID 121970196.

Bibcode

— (1975). "Development of concepts in the history of quantum theory". American Journal of Physics. 43 (5): 389–394. :1975AmJPh..43..389H. doi:10.1119/1.9833. The substance of this article was presented by Heisenberg in a lecture at Harvard University.

Bibcode

— (1949) [1930]. . Translators Eckart, Carl; Hoyt, F.C. Dover. ISBN 978-0-486-60113-7.

The Physical Principles of the Quantum Theory

— (1955). . Rowohlts Enzyklopädie. Vol. 8. Rowohlt.

Das Naturbild der heutigen Physik

— (1966). . Fawcett.

Philosophic Problems of Nuclear Science

— (1971). . Harper & Row. ISBN 9780061316227.

Physics and Beyond: Encounters and Conversations

— (1971). .

Physics and Beyond: Encounters and Conversations

— (1977). Tradition in der Wissenschaft. Reden und Aufsätze. Munich: Piper.

—; Busche, Jürgen (1979). . Reclam. ISBN 978-3-15-009948-3.

Quantentheorie und Philosophie: Vorlesungen und Aufsätze

— (1979). . Ox Bow. ISBN 978-0-918024-14-5.

Philosophical problems of quantum physics

— (1983). Tradition in Science. Seabury Press.

— (1988). Physik und Philosophie: Weltperspektiven. Ullstein Taschenbuchvlg.

— (1989). . Princeton University Press. ISBN 978-0-691-02433-2.

Encounters with Einstein: And Other Essays on People, Places, and Particles

—; Northrop, Filmer (1999). Physics and Philosophy: The Revolution in Modern Science (Great Minds Series). Prometheus.

— (2002). . Piper. ISBN 978-3-492-22297-6.

Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik

— (1992). (ed.). Deutsche und Jüdische Physik. Piper. ISBN 978-3-492-11676-3.

Rechenberg, Helmut

— (2007). Physik und Philosophie: Weltperspektiven. Hirzel.

— (2007). . Harper Perennial Modern Classics (reprint ed.). HarperCollins. ISBN 978-0-06-120919-2. (full text of 1958 version)

Physics and Philosophy: The Revolution in Modern Science

In popular culture[edit]

Heisenberg's surname is used as the primary alias for Walter White (played by Bryan Cranston), the lead character in AMC's crime drama series Breaking Bad, throughout White's transformation from a high-school chemistry teacher into a meth cook and a drug kingpin. In the spin-off prequel series Better Call Saul, a German character named Werner directs the construction of the meth lab belonging to antagonist Gus Fring that Walt cooks in for much of Breaking Bad.


Heisenberg was the target of an assassination by spy Moe Berg in the film The Catcher Was a Spy, based on real events. Heisenberg is also credited with building the atomic bomb used by the Axis in the Amazon TV series adaptation of the novel The Man in the High Castle by Philip K. Dick. Atomic bombs in this universe are referred to as Heisenberg Devices.


Daniel Craig portrayed Heisenberg in the 2002 film Copenhagen, an adaptation of Michael Frayn's play. Matthias Schweighöfer portrayed Heisenberg in the 2023 biopic Oppenheimer.


Heisenberg is the namesake of Resident Evil Village secondary antagonist Karl Heisenberg. Heisenberg's research on ferromagnetism served as inspiration for the character's magnetic abilities.


In the television series Star Trek: The Next Generation, the "Heisenberg compensator" is an essential component of transporter technology to ensure the integrity of transported matter. The compensator counteracts effects of the applied characteristics identified in Heisenberg's uncertainty principle. To accurately isolate matter prior to its entry into the transporter buffer, all particles must be located, their velocity observed, and tracked; the compensators allow this to happen.

List of things named after Werner Heisenberg

List of German inventors and discoverers

The Physical Principles of the Quantum Theory

from the Alsos Digital Library for Nuclear Issues

Annotated Bibliography for Werner Heisenberg

Biography: Werner Karl Heisenberg

MacTutor

Archived 16 October 2012 at the Wayback Machine biographical exhibit by American Institute of Physics.

Heisenberg/Uncertainty

Linus Pauling and the Nature of the Chemical Bond: A Documentary History

Key Participants: Werner Heisenberg

Nobelprize.org biography

Werner Heisenberg: Atomic Physics Mentorees

. American Institute of Physics, Niels Bohr Library & Archives. 16 June 1970. Archived from the original on 26 January 2013. Retrieved 23 October 2008.

"Oral history interview transcript with Werner Heisenberg"

. American Institute of Physics, Niels Bohr Library & Archives. 30 November 1962. Archived from the original on 26 January 2013. Retrieved 3 November 2008.

"Oral history interview transcript with Werner Heisenberg"

in the 20th Century Press Archives of the ZBW

Newspaper clippings about Werner Heisenberg