Katana VentraIP

Wind tunnel

Wind tunnels are machines in which objects are held stationary inside a tube, and air is blown around it to study the interaction between the object and the moving air. They are used to test the aerodynamic effects of aircraft, rockets, cars, and buildings. Different wind tunnels range in size from less than a foot across, to over 100 feet (30 m), and can have air that moves at speeds from a light breeze to hypersonic velocities.

Usually, large fans move air through the wind tunnel, while the object being tested is held stationary. The object can be an aerodynamic test object such as a cylinder or an airfoil, an individual component of an aircraft, a small model of the vehicle, or, in the largest tunnels, even a full-sized vehicle. Different measurements can be taken from these tests. The aerodynamic forces on the entire object can be measured, or on individual components of it. The air pressure at different points can be measured with sensors. Smoke can be introduced into the airstream to show the path that air takes around the object. Or, small threads can be attached to specific parts to show the airflow at those points.


The earliest wind tunnels were invented towards the end of the 19th century, in the early days of aeronautical research, as part of the effort to develop heavier-than-air flying machines. The wind tunnel reversed the usual situation. Instead of the air standing still and an aircraft moving, an object would be held still and the air moved around it. In this way, a stationary observer could study the flying object in action, and could measure the aerodynamic forces acting on it.


The development of wind tunnels accompanied the development of the airplane. Large wind tunnels were built during World War II, and as supersonic aircraft were developed, supersonic wind tunnels were constructed to test them. Wind tunnel testing was considered of strategic importance during the Cold War for development of aircraft and missiles.


Other problems are also studied with wind tunnels. The effects of wind on man-made structures need to be studied when buildings became tall enough to be significantly affected by the wind. Very tall buildings present large surfaces to the wind, and the resulting forces have to be resisted by the building's internal structure or else the building will collapse. Determining such forces was required before building codes could specify the required strength of such buildings and these tests continue to be used for large or unusual buildings.


Wind tunnel testing was first applied to automobiles as early as the 1920s,[1] on cars such as the Rumpler Tropfenwagen, and later the Chrysler Airflow. Initially, automakers would test out scale models of their cars, but later, full scale automotive wind tunnels were built. Starting in the 1960s, wind tunnel testing began to receive widespread adoption for automobiles,[2] not so much to determine aerodynamic forces in the same way as an airplane, but to increase the fuel efficiency of vehicles by reducing the aerodynamic drag. In these studies, the interaction between the road and the vehicle plays a significant role, and this interaction must be taken into consideration when interpreting the test results. In the real world, the vehicle is moving while the road and air are stationary. In a wind tunnel test, the road must also be moved past a vehicle along with air being blown around it. This has been accomplished with moving belts under the test vehicle to simulate the moving road, and very similar devices are used in wind tunnel testing of aircraft take-off and landing configurations.


Sporting equipment has also studied in wind tunnels, including golf clubs, golf balls, bobsleds, cyclists, and race car helmets. Helmet aerodynamics is particularly important in open cockpit race cars such as Indycar and Formula One. Excessive lift forces on the helmet can cause considerable neck strain on the driver, and flow separation on the back side of the helmet can cause turbulent buffeting and thus blurred vision for the driver at high speeds.[3]


The advances in computational fluid dynamics (CFD) modelling on high-speed digital computers has reduced the demand for wind tunnel testing, but has not completely eliminated it. Many real-world problems can still not be modeled accurately enough by CFD to eliminate the need for physical tests in wind tunnels.

Geometric similarity: all dimensions of the object must be proportionally scaled.

: the ratio of the airspeed to the speed of sound should be identical for the scaled model and the actual object (having identical Mach number in a wind tunnel and around the actual object is not equal to having identical airspeeds).

Mach number

: the ratio of inertial forces to viscous forces should be kept. This parameter is difficult to satisfy with a scaled model and has led to development of pressurized and cryogenic wind tunnels in which the viscosity of the working fluid can be greatly changed to compensate for the reduced scale of the model.

Reynolds number

Air velocity and pressures are measured in several ways in wind tunnels.


Air velocity through the test section is determined by Bernoulli's principle. Measurement of the dynamic pressure, the static pressure, and (for compressible flow only) the temperature rise in the airflow. The direction of airflow around a model can be determined by tufts of yarn attached to the aerodynamic surfaces. The direction of airflow approaching a surface can be visualized by mounting threads in the airflow ahead of and aft of the test model. Smoke or bubbles of liquid can be introduced into the airflow upstream of the test model, and their path around the model can be photographed (see particle image velocimetry).


Aerodynamic forces on the test model are usually measured with beam balances, connected to the test model with beams, strings, or cables.


The pressure distributions across the test model have historically been measured by drilling many small holes along the airflow path, and using multi-tube manometers to measure the pressure at each hole. Pressure distributions can more conveniently be measured by the use of pressure-sensitive paint, in which higher local pressure is indicated by lowered fluorescence of the paint at that point. Pressure distributions can also be conveniently measured by the use of pressure-sensitive pressure belts, a recent development in which multiple ultra-miniaturized pressure sensor modules are integrated into a flexible strip. The strip is attached to the aerodynamic surface with tape, and it sends signals depicting the pressure distribution along its surface.[4]


Pressure distributions on a test model can also be determined by performing a wake survey, in which either a single pitot tube is used to obtain multiple readings downstream of the test model, or a multiple-tube manometer is mounted downstream and all its readings are taken.


The aerodynamic properties of an object can not all remain the same for a scaled model.[5] However, by observing certain similarity rules, a very satisfactory correspondence between the aerodynamic properties of a scaled model and a full-size object can be achieved. The choice of similarity parameters depends on the purpose of the test, but the most important conditions to satisfy are usually:


In certain particular test cases, other similarity parameters must be satisfied, such as e.g. Froude number.

History[edit]

Origins[edit]

English military engineer and mathematician Benjamin Robins (1707–1751) invented a whirling arm apparatus to determine drag[6] and did some of the first experiments in aviation theory.


Sir George Cayley (1773–1857) also used a whirling arm to measure the drag and lift of various airfoils.[7] His whirling arm was 5 feet (1.5 m) long and attained top speeds between 10 and 20 feet per second (3 to 6 m/s).


Otto Lilienthal used a rotating arm to accurately measure wing airfoils with varying angles of attack, establishing their lift-to-drag ratio polar diagrams, but was lacking the notions of induced drag and Reynolds numbers.[8]

Smoke

Carbon dioxide injection

Tufts, mini-tufts, or flow cones can be applied to a model and remain attached during testing. Tufts can be used to gauge air flow patterns and flow separation. Tufts are sometimes made of fluorescent material and are illuminated under black light to aid in visualization.

Evaporating suspensions are simply a mixture of some sort or fine powder, talc, or clay mixed into a liquid with a low latent heat of evaporation. When the wind is turned on the liquid quickly evaporates, leaving behind the clay in a pattern characteristic of the air flow.

Oil: When oil is applied to the model surface it can clearly show the transition from laminar to turbulent flow as well as flow separation.

Tempera Paint: Similar to oil, tempera paint can be applied to the surface of the model by initially applying the paint in spaced out dots. After running the wind tunnel, the flow direction and separation can be identified. An additional strategy in the use of tempera paint is to use blacklights to create a luminous flow pattern with the tempera paint.

Fog (usually from water particles) is created with an piezoelectric nebulizer. The fog is transported inside the wind tunnel (preferably of the closed circuit and closed test section type). An electrically heated grid is inserted before the test section, which evaporates the water particles at its vicinity, thus forming fog sheets. The fog sheets function as streamlines over the test model when illuminated by a light sheet.

ultrasonic

Sublimation: If the air movement in the tunnel is sufficiently non-turbulent, a particle stream released into the airflow will not break up as the air moves along, but stay together as a sharp thin line. Multiple particle streams released from a grid of many nozzles can provide a dynamic three-dimensional shape of the airflow around a body. As with the force balance, these injection pipes and nozzles need to be shaped in a manner that minimizes the introduction of turbulent airflow into the airstream.

Sublimation (alternate definition): A flow visualization technique is to coat the model in a sublimatable material where once the wind is turned on in regions where the airflow is laminar, the material will remain attached to the model, while conversely in turbulent areas the material will evaporate off of the model. This technique is primarily employed to verify that trip dots placed at the leading edge in order to force a transition are successfully achieving the intended goal.

Low-speed wind tunnel

High speed wind tunnel

Subsonic and transonic wind tunnel

Supersonic wind tunnel

Hypersonic wind tunnel

High enthalpy wind tunnel

Automobile design

Frank Wattendorf

Sting (fixture)

the first suspension bridge to be tested in a wind tunnel

Tacoma Narrows Bridge (1950)

the hydrodynamics-oriented version of a wind tunnel

Water tunnel

List of wind tunnels

Jewel B. Barlow, William H. Rae, Jr., Allan Pope: Low speed wind tunnels testing (3rd ed.)  978-0-471-55774-6

ISBN

Thierry Dubois (11 May 2017). . Aviation Week & Space Technology. Thanks to updated measurement techniques, wind tunnels remain indispensable.

"Wind Tunnels Have Future in Digital Age, Europeans Say"