Katana VentraIP

The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular points, inflection points and points at infinity. More advanced questions involve the topology of the curve and the relationship between curves defined by different equations.


Algebraic geometry occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex analysis, topology and number theory. As a study of systems of polynomial equations in several variables, the subject of algebraic geometry begins with finding specific solutions via equation solving, and then proceeds to understand the intrinsic properties of the totality of solutions of a system of equations. This understanding requires both conceptual theory and computational technique.


In the 20th century, algebraic geometry split into several subareas.


Much of the development of the mainstream of algebraic geometry in the 20th century occurred within an abstract algebraic framework, with increasing emphasis being placed on "intrinsic" properties of algebraic varieties not dependent on any particular way of embedding the variety in an ambient coordinate space; this parallels developments in topology, differential and complex geometry. One key achievement of this abstract algebraic geometry is Grothendieck's scheme theory which allows one to use sheaf theory to study algebraic varieties in a way which is very similar to its use in the study of differential and analytic manifolds. This is obtained by extending the notion of point: In classical algebraic geometry, a point of an affine variety may be identified, through Hilbert's Nullstellensatz, with a maximal ideal of the coordinate ring, while the points of the corresponding affine scheme are all prime ideals of this ring. This means that a point of such a scheme may be either a usual point or a subvariety. This approach also enables a unification of the language and the tools of classical algebraic geometry, mainly concerned with complex points, and of algebraic number theory. Wiles' proof of the longstanding conjecture called Fermat's Last Theorem is an example of the power of this approach.

Given a subset U of An, when is U = V(I(U))?

Given a set S of polynomials, when is S = I(V(S))?

Dennis S. Arnon showed that 's Cylindrical algebraic decomposition (CAD) allows the computation of the topology of semi-algebraic sets,

George E. Collins

presented Gröbner bases and his algorithm to compute them,

Bruno Buchberger

presented a new algorithm for solving systems of homogeneous polynomial equations with a computational complexity which is essentially polynomial in the expected number of solutions and thus simply exponential in the number of the unknowns. This algorithm is strongly related with Macaulay's multivariate resultant.

Daniel Lazard

Abstract modern viewpoint[edit]

The modern approaches to algebraic geometry redefine and effectively extend the range of basic objects in various levels of generality to schemes, formal schemes, ind-schemes, algebraic spaces, algebraic stacks and so on. The need for this arises already from the useful ideas within theory of varieties, e.g. the formal functions of Zariski can be accommodated by introducing nilpotent elements in structure rings; considering spaces of loops and arcs, constructing quotients by group actions and developing formal grounds for natural intersection theory and deformation theory lead to some of the further extensions.


Most remarkably, in the late 1950s, algebraic varieties were subsumed into Alexander Grothendieck's concept of a scheme. Their local objects are affine schemes or prime spectra which are locally ringed spaces which form a category which is antiequivalent to the category of commutative unital rings, extending the duality between the category of affine algebraic varieties over a field k, and the category of finitely generated reduced k-algebras. The gluing is along Zariski topology; one can glue within the category of locally ringed spaces, but also, using the Yoneda embedding, within the more abstract category of presheaves of sets over the category of affine schemes. The Zariski topology in the set theoretic sense is then replaced by a Grothendieck topology. Grothendieck introduced Grothendieck topologies having in mind more exotic but geometrically finer and more sensitive examples than the crude Zariski topology, namely the étale topology, and the two flat Grothendieck topologies: fppf and fpqc; nowadays some other examples became prominent including Nisnevich topology. Sheaves can be furthermore generalized to stacks in the sense of Grothendieck, usually with some additional representability conditions leading to Artin stacks and, even finer, Deligne–Mumford stacks, both often called algebraic stacks.


Sometimes other algebraic sites replace the category of affine schemes. For example, Nikolai Durov has introduced commutative algebraic monads as a generalization of local objects in a generalized algebraic geometry. Versions of a tropical geometry, of an absolute geometry over a field of one element and an algebraic analogue of Arakelov's geometry were realized in this setup.


Another formal generalization is possible to universal algebraic geometry in which every variety of algebras has its own algebraic geometry. The term variety of algebras should not be confused with algebraic variety.


The language of schemes, stacks and generalizations has proved to be a valuable way of dealing with geometric concepts and became cornerstones of modern algebraic geometry.


Algebraic stacks can be further generalized and for many practical questions like deformation theory and intersection theory, this is often the most natural approach. One can extend the Grothendieck site of affine schemes to a higher categorical site of derived affine schemes, by replacing the commutative rings with an infinity category of differential graded commutative algebras, or of simplicial commutative rings or a similar category with an appropriate variant of a Grothendieck topology. One can also replace presheaves of sets by presheaves of simplicial sets (or of infinity groupoids). Then, in presence of an appropriate homotopic machinery one can develop a notion of derived stack as such a presheaf on the infinity category of derived affine schemes, which is satisfying certain infinite categorical version of a sheaf axiom (and to be algebraic, inductively a sequence of representability conditions). Quillen model categories, Segal categories and quasicategories are some of the most often used tools to formalize this yielding the derived algebraic geometry, introduced by the school of Carlos Simpson, including Andre Hirschowitz, Bertrand Toën, Gabrielle Vezzosi, Michel Vaquié and others; and developed further by Jacob Lurie, Bertrand Toën, and Gabriele Vezzosi. Another (noncommutative) version of derived algebraic geometry, using A-infinity categories has been developed from the early 1990s by Maxim Kontsevich and followers.

History[edit]

Before the 16th century[edit]

Some of the roots of algebraic geometry date back to the work of the Hellenistic Greeks from the 5th century BC. The Delian problem, for instance, was to construct a length x so that the cube of side x contained the same volume as the rectangular box a2b for given sides a and b. Menaechmus (c. 350 BC) considered the problem geometrically by intersecting the pair of plane conics ay = x2 and xy = ab.[2] In the 3rd century BC, Archimedes and Apollonius systematically studied additional problems on conic sections using coordinates.[2][3] Apollonius in the Conics further developed a method that is so similar to analytic geometry that his work is sometimes thought to have anticipated the work of Descartes by some 1800 years.[4] His application of reference lines, a diameter and a tangent is essentially no different from our modern use of a coordinate frame, where the distances measured along the diameter from the point of tangency are the abscissas, and the segments parallel to the tangent and intercepted between the axis and the curve are the ordinates. He further developed relations between the abscissas and the corresponding coordinates using geometric methods like using parabolas and curves.[5][6][7] Medieval mathematicians, including Omar Khayyam, Leonardo of Pisa, Gersonides and Nicole Oresme in the Medieval Period ,[8] solved certain cubic and quadratic equations by purely algebraic means and then interpreted the results geometrically. The Persian mathematician Omar Khayyám (born 1048 AD) believed that there was a relationship between arithmetic, algebra and geometry.[9][10][11] This was criticized by Jeffrey Oaks, who claims that the study of curves by means of equations originated with Descartes in the seventeenth century.[12]

Renaissance[edit]

Such techniques of applying geometrical constructions to algebraic problems were also adopted by a number of Renaissance mathematicians such as Gerolamo Cardano and Niccolò Fontana "Tartaglia" on their studies of the cubic equation. The geometrical approach to construction problems, rather than the algebraic one, was favored by most 16th and 17th century mathematicians, notably Blaise Pascal who argued against the use of algebraic and analytical methods in geometry.[13] The French mathematicians Franciscus Vieta and later René Descartes and Pierre de Fermat revolutionized the conventional way of thinking about construction problems through the introduction of coordinate geometry. They were interested primarily in the properties of algebraic curves, such as those defined by Diophantine equations (in the case of Fermat), and the algebraic reformulation of the classical Greek works on conics and cubics (in the case of Descartes).


During the same period, Blaise Pascal and Gérard Desargues approached geometry from a different perspective, developing the synthetic notions of projective geometry. Pascal and Desargues also studied curves, but from the purely geometrical point of view: the analog of the Greek ruler and compass construction. Ultimately, the analytic geometry of Descartes and Fermat won out, for it supplied the 18th century mathematicians with concrete quantitative tools needed to study physical problems using the new calculus of Newton and Leibniz. However, by the end of the 18th century, most of the algebraic character of coordinate geometry was subsumed by the calculus of infinitesimals of Lagrange and Euler.

19th and early 20th century[edit]

It took the simultaneous 19th century developments of non-Euclidean geometry and Abelian integrals in order to bring the old algebraic ideas back into the geometrical fold. The first of these new developments was seized up by Edmond Laguerre and Arthur Cayley, who attempted to ascertain the generalized metric properties of projective space. Cayley introduced the idea of homogeneous polynomial forms, and more specifically quadratic forms, on projective space. Subsequently, Felix Klein studied projective geometry (along with other types of geometry) from the viewpoint that the geometry on a space is encoded in a certain class of transformations on the space. By the end of the 19th century, projective geometers were studying more general kinds of transformations on figures in projective space. Rather than the projective linear transformations which were normally regarded as giving the fundamental Kleinian geometry on projective space, they concerned themselves also with the higher degree birational transformations. This weaker notion of congruence would later lead members of the 20th century Italian school of algebraic geometry to classify algebraic surfaces up to birational isomorphism.


The second early 19th century development, that of Abelian integrals, would lead Bernhard Riemann to the development of Riemann surfaces.


In the same period began the algebraization of the algebraic geometry through commutative algebra. The prominent results in this direction are Hilbert's basis theorem and Hilbert's Nullstellensatz, which are the basis of the connection between algebraic geometry and commutative algebra, and Macaulay's multivariate resultant, which is the basis of elimination theory. Probably because of the size of the computation which is implied by multivariate resultants, elimination theory was forgotten during the middle of the 20th century until it was renewed by singularity theory and computational algebraic geometry.[a]

20th century[edit]

B. L. van der Waerden, Oscar Zariski and André Weil developed a foundation for algebraic geometry based on contemporary commutative algebra, including valuation theory and the theory of ideals. One of the goals was to give a rigorous framework for proving the results of the Italian school of algebraic geometry. In particular, this school used systematically the notion of generic point without any precise definition, which was first given by these authors during the 1930s.


In the 1950s and 1960s, Jean-Pierre Serre and Alexander Grothendieck recast the foundations making use of sheaf theory. Later, from about 1960, and largely led by Grothendieck, the idea of schemes was worked out, in conjunction with a very refined apparatus of homological techniques. After a decade of rapid development the field stabilized in the 1970s, and new applications were made, both to number theory and to more classical geometric questions on algebraic varieties, singularities, moduli, and formal moduli.


An important class of varieties, not easily understood directly from their defining equations, are the abelian varieties, which are the projective varieties whose points form an abelian group. The prototypical examples are the elliptic curves, which have a rich theory. They were instrumental in the proof of Fermat's Last Theorem and are also used in elliptic-curve cryptography.


In parallel with the abstract trend of the algebraic geometry, which is concerned with general statements about varieties, methods for effective computation with concretely-given varieties have also been developed, which lead to the new area of computational algebraic geometry. One of the founding methods of this area is the theory of Gröbner bases, introduced by Bruno Buchberger in 1965. Another founding method, more specially devoted to real algebraic geometry, is the cylindrical algebraic decomposition, introduced by George E. Collins in 1973.


See also: derived algebraic geometry.

Analytic geometry[edit]

An analytic variety is defined locally as the set of common solutions of several equations involving analytic functions. It is analogous to the included concept of real or complex algebraic variety. Any complex manifold is an analytic variety. Since analytic varieties may have singular points, not all analytic varieties are manifolds.


Modern analytic geometry is essentially equivalent to real and complex algebraic geometry, as has been shown by Jean-Pierre Serre in his paper GAGA, the name of which is French for Algebraic geometry and analytic geometry. Nevertheless, the two fields remain distinct, as the methods of proof are quite different and algebraic geometry includes also geometry in finite characteristic.

Kline, M. (1972). Mathematical Thought from Ancient to Modern Times. Vol. 1. Oxford University Press.  0195061357.

ISBN

(1945). Einfuehrung in die algebraische Geometrie. Dover.

van der Waerden, B. L.

; Pedoe, Daniel (1994). Methods of Algebraic Geometry Volume 1. Cambridge University Press. ISBN 978-0-521-46900-5. Zbl 0796.14001.

Hodge, W. V. D.

; Pedoe, Daniel (1994). Methods of Algebraic Geometry Volume 2. Cambridge University Press. ISBN 978-0-521-46901-2. Zbl 0796.14002.

Hodge, W. V. D.

; Pedoe, Daniel (1994). Methods of Algebraic Geometry Volume 3. Cambridge University Press. ISBN 978-0-521-46775-9. Zbl 0796.14003.

Hodge, W. V. D.

Foundations of Algebraic Geometry by Ravi Vakil, 808 pp.

entry on PlanetMath

Algebraic geometry

English translation of the van der Waerden textbook

(March 3, 1972). "The History of Algebraic Geometry". Talk at the Department of Mathematics of the University of Wisconsin–Milwaukee. Archived from the original on 2021-11-22 – via YouTube.

Dieudonné, Jean

an open source textbook and reference work on algebraic stacks and algebraic geometry

The Stacks Project