Katana VentraIP

Carbon–fluorine bond

The carbon–fluorine bond is a polar covalent bond between carbon and fluorine that is a component of all organofluorine compounds. It is one of the strongest single bonds in chemistry (after the B–F single bond, Si–F single bond, and H–F single bond), and relatively short, due to its partial ionic character. The bond also strengthens and shortens as more fluorines are added to the same carbon on a chemical compound. As such, fluoroalkanes like tetrafluoromethane (carbon tetrafluoride) are some of the most unreactive organic compounds.

Electronegativity and bond strength[edit]

The high electronegativity of fluorine (4.0 for fluorine vs. 2.5 for carbon) gives the carbon–fluorine bond a significant polarity or dipole moment. The electron density is concentrated around the fluorine, leaving the carbon relatively electron poor. This introduces ionic character to the bond through partial charges (Cδ+—Fδ−). The partial charges on the fluorine and carbon are attractive, contributing to the unusual bond strength of the carbon–fluorine bond. The bond is labeled as "the strongest in organic chemistry,"[1] because fluorine forms the strongest single bond to carbon. Carbon–fluorine bonds can have a bond dissociation energy (BDE) of up to 130 kcal/mol.[2] The BDE (strength of the bond) of C–F is higher than other carbon–halogen and carbon–hydrogen bonds. For example, the BDEs of the C–X bond within a CH3–X molecule is 115, 104.9, 83.7, 72.1, and 57.6 kcal/mol for X = fluorine, hydrogen, chlorine, bromine, and iodine, respectively.[3]

Breaking C–F bonds[edit]

Breaking C–F bonds is of interest as a way to decompose and destroy organofluorine "forever chemicals" such as PFOA and perfluorinated compounds (PFCs). Candidate methods include catalysts, such as platinum atoms;[16] photocatalysts; UV, iodide, and sulfite,[17] radicals; etc.

Fluorocarbon

Organofluorine chemistry

Carbon–hydrogen bond

Carbon–carbon bond

Carbon–nitrogen bond

Carbon–oxygen bond