Katana VentraIP

Equal temperament

An equal temperament is a musical temperament or tuning system that approximates just intervals by dividing an octave (or other interval) into steps such that the ratio of the frequencies of any adjacent pair of notes is the same. This system yields pitch steps perceived as equal in size, due to the logarithmic changes in pitch frequency.[2]

In classical music and Western music in general, the most common tuning system since the 18th century has been 12 equal temperament (also known as 12 tone equal temperament, 12 TET or 12 ET, informally abbreviated as 12 equal), which divides the octave into 12 parts, all of which are equal on a logarithmic scale, with a ratio equal to the 12th root of 2, ( 122 ≈ 1.05946 ). That resulting smallest interval, 1/12 the width of an octave, is called a semitone or half step. In Western countries the term equal temperament, without qualification, generally means 12 TET.


In modern times, 12 TET is usually tuned relative to a standard pitch of 440 Hz, called A 440, meaning one note, A, is tuned to 440 hertz and all other notes are defined as some multiple of semitones away from it, either higher or lower in frequency. The standard pitch has not always been 440 Hz; it has varied considerably and generally risen over the past few hundred years.[3]


Other equal temperaments divide the octave differently. For example, some music has been written in 19 TET and 31 TET, while the Arab tone system uses 24 TET.


Instead of dividing an octave, an equal temperament can also divide a different interval, like the equal-tempered version of the Bohlen–Pierce scale, which divides the just interval of an octave and a fifth (ratio 3:1), called a "tritave" or a "pseudo-octave" in that system, into 13 equal parts.


For tuning systems that divide the octave equally, but are not approximations of just intervals, the term equal division of the octave, or EDO can be used.


Unfretted string ensembles, which can adjust the tuning of all notes except for open strings, and vocal groups, who have no mechanical tuning limitations, sometimes use a tuning much closer to just intonation for acoustic reasons. Other instruments, such as some wind, keyboard, and fretted instruments, often only approximate equal temperament, where technical limitations prevent exact tunings.[4] Some wind instruments that can easily and spontaneously bend their tone, most notably trombones, use tuning similar to string ensembles and vocal groups.

In 5 TET, the tempered perfect fifth is 720 cents wide (at the top of the tuning continuum), and marks the endpoint on the tuning continuum at which the width of the minor second shrinks to a width of 0 cents.

In 7 TET, the tempered perfect fifth is 686 cents wide (at the bottom of the tuning continuum), and marks the endpoint on the tuning continuum, at which the minor second expands to be as wide as the major second (at 171 cents each).

(2005) [1877 (4th German ed.), 1885 (2nd English ed.)]. On the Sensations of Tone as a Physiological Basis for the Theory of Music. Translated by Ellis, A.J. (reprint ed.). Whitefish, MT: Kellinger Publishing. ISBN 978-1-41917893-1. OCLC 71425252 – via Internet Archive (archive.org).
— A foundational work on acoustics and the perception of sound. Especially the material in Appendix XX: Additions by the translator, pages 430–556, (pdf pages 451–577) (see also wiki article On Sensations of Tone)

Helmholtz, H.

by Kyle Gann

An Introduction to Historical Tunings

Xenharmonic wiki on EDOs vs. Equal Temperaments

Huygens-Fokker Foundation Centre for Microtonal Music

A.Orlandini: Music Acoustics

"Temperament" from A supplement to Mr. Chambers's cyclopædia (1753)

Barbieri, Patrizio. . (2008) Latina, Il Levante Libreria Editrice

Enharmonic instruments and music, 1470–1900

Jim Kukula.

Fractal Microtonal Music

All existing 18th century quotes on J.S. Bach and temperament

Dominic Eckersley: ""

Rosetta Revisited: Bach's Very Ordinary Temperament

Well Temperaments, based on the Werckmeister Definition

by PETER BUCH

FAVORED CARDINALITIES OF SCALES