Equalization (audio)
Equalization, or simply EQ, in sound recording and reproduction is the process of adjusting the volume of different frequency bands within an audio signal. The circuit or equipment used to achieve this is called an equalizer.[1][2]
This article is about frequency-dependent processing of audio signals. For other uses, see Equalization (disambiguation).
Most hi-fi equipment uses relatively simple filters to make bass and treble adjustments. Graphic and parametric equalizers have much more flexibility in tailoring the frequency content of an audio signal. Broadcast and recording studios use sophisticated equalizers capable of much more detailed adjustments, such as eliminating unwanted sounds or making certain instruments or voices more prominent. Since equalizers "adjust the amplitude of audio signals at particular frequencies" they are, "in other words, frequency-specific volume knobs."[3]: 73
Equalizers are used in recording and radio studios, production control rooms, and live sound reinforcement and in instrument amplifiers, such as guitar amplifiers, to correct or adjust the response of microphones, instrument pickups, loudspeakers, and hall acoustics.[2] Equalization may also be used to eliminate or reduce unwanted sounds (e.g., low-frequency hum coming from a guitar amplifier), make certain instruments or voices more (or less) prominent, enhance particular aspects of an instrument's tone, or combat feedback (howling) in a public address system.[1][2] Equalizers are also used in music production to adjust the timbre of individual instruments and voices by adjusting their frequency content and to fit individual instruments within the overall frequency spectrum of the mix.[3]: 73–74
History[edit]
Filtering audio frequencies dates back at least to acoustic telegraphy[6] and multiplexing in general. Audio electronic equipment evolved to incorporate filtering elements as consoles in radio stations began to be used for recording as much as broadcast. Early filters included basic bass and treble controls featuring fixed frequency centers, and fixed levels of cut or boost. These filters worked over broad frequency ranges. Variable equalization in audio reproduction was first used by John Volkman working at RCA in the 1920s. That system was used to equalize a motion picture theater sound playback system.[7][8]
The Langevin Model EQ-251A was the first equalizer to use slide controls. It featured two passive equalization sections, a bass shelving filter, and a pass band filter. Each filter had switchable frequencies and used a 15-position slide switch to adjust cut or boost.[9] The first true graphic equalizer was the type 7080 developed by Art Davis's Cinema Engineering. It featured 6 bands with a boost or cut range of 8 dB. It used a slide switch to adjust each band in 1 dB steps. Davis's second graphic equalizer was the Altec Lansing Model 9062A EQ. In 1967 Davis developed the first 1/3 octave variable notch filter set, the Altec-Lansing "Acousta-Voice" system.[8]
In 1966, Burgess Macneal and George Massenburg began work on a new recording console. Macneal and Massenburg, who was still a teenager, conceptualized an idea for a sweep-tunable EQ that would avoid inductors and switches. Soon after, Bob Meushaw, a friend of Massenburg, built a three-band, frequency-adjustable, fixed-Q equalizer. When asked who invented the parametric equalizer, Massenburg stated, "Four people could possibly lay claim to the modern concept: Bob Meushaw, Burgess Macneal, Daniel Flickinger, and myself… Our (Bob’s, Burgess’ and my) sweep-tunable EQ was borne, more or less, out of an idea that Burgess and I had around 1966 or 1967 for an EQ… three controls adjusting, independently, the parameters for each of three bands for a recording console… I wrote and delivered the AES paper on Parametrics at the Los Angeles show in 1972… It’s the first mention of 'Parametric' associated with sweep-tunable EQ."[10]
Daniel N. Flickinger introduced the first parametric equalizer in early 1971. His design leveraged a high-performance op-amp of his own design, the 535 series[11] to achieve filtering circuits that were before impossible. Flickinger's patent from early in 1971[12] showed the circuit topology that would come to dominate audio equalization until the present day, as well as the theoretical underpinnings of the elegant circuit. Instead of slide potentiometers working on individual bands of frequency, or rotary switches, Flickinger's circuit allowed arbitrary selection of frequency and cut or boost level in three overlapping bands over the entire audio spectrum. Six knobs on his early EQs would control these sweepable filters. Up to six switches were incorporated to select shelving on the high and low bands, and bypassing for any unused band for the purest signal path.
Similar designs appeared soon thereafter from George Massenburg (in 1972) and Burgess McNeal from ITI corp. In May 1972 Massenburg introduced the term parametric equalization in a paper presented at the 42nd convention of the Audio Engineering Society.[13] Most channel equalization on mixing consoles made from 1971 to the present day rely upon the designs of Flickinger, Massenburg and McNeal in either semi or fully-parametric topology. In the late 1990s and in the 2000s, parametric equalizers became increasingly available as digital signal processing (DSP) equipment, usually in the form of plug-ins for various digital audio workstations. Standalone outboard gear versions of DSP parametric equalizers were also quickly introduced after the software versions.
Uses[edit]
In sound recording, equalization may be used to adjust frequency responses for practical or aesthetic reasons, where the end result typically is unequal volume levels for the different frequencies.[18] For example, equalization is used to modify an instrument's sound or make certain instruments and sounds more prominent. A recording engineer may use an equalizer to make some high-pitches in a vocal part louder while making low-pitches in a drum part quieter.[1][2]
Equalization is commonly used to increase the depth of a mix, creating the impression that some sounds in a mono or stereo mix are farther away or closer than others.[3]: 75–76 Equalization is also commonly used to give tracks with similar frequency components complementary spectral contours, known as mirrored equalization. Selected components of parts that would otherwise compete, such as bass guitar and kick drum, are boosted in one part and cut in the other, and vice versa, so that they both stand out.[3]: 76–77
Equalizers can correct problems posed by a room's acoustics, as an auditorium will generally have an uneven frequency response especially due to standing waves and acoustic dampening. For instance, the frequency response of a room may be analyzed using a spectrum analyzer and a pink noise generator. Then a graphic equalizer can be easily adjusted to compensate for the room's acoustics. Such compensation can also be applied to tweak the sound quality of a recording studio in addition to its use in live sound reinforcement systems and even home hi-fi systems.
During live events where signals from microphones are amplified and sent to speaker systems, equalization is not only used to "flatten" the frequency response but may also be useful in eliminating feedback. When the sound produced by the speakers is picked up by a microphone, it is further reamplified; this recirculation of sound can lead to "howling", requiring the sound technician to reduce the gain for that microphone, perhaps sacrificing the contribution of a singer's voice, for instance. Even at a slightly reduced gain, the feedback will still cause an unpleasant resonant sound around the frequency at which it would howl. But because the feedback is troublesome at a particular frequency, it is possible to cut the gain only around that frequency while preserving the gain at most other frequencies. This can best be done using a parametric equalizer tuned to that very frequency with its amplitude control sharply reduced. By adjusting the equalizer for a narrow bandwidth (high Q), most other frequency components will not be affected. The extreme case when the signal at the filter's center frequency is completely eliminated is known as a notch filter.
An equalizer can be used to correct or modify the frequency response of a loudspeaker system rather than designing the speaker itself to have the desired response. For instance, the Bose 901 speaker system does not use separate larger and smaller drivers to cover the bass and treble frequencies. Instead it uses nine drivers all of the same four-inch diameter, more akin to what one would find in a table radio. However, this speaker system is sold with an active equalizer. That equalizer must be inserted into the amplifier system so that the amplified signal that is finally sent to the speakers has its response increased at the frequencies where the response of these drivers falls off, and vice versa, producing the response intended by the manufacturer.[19]
Tone controls (usually designated "bass" and "treble") are simple shelving filters included in most hi-fi equipment for gross adjustment of the frequency balance. The bass control may be used, for instance, to increase the drum and bass parts at a dance party, or to reduce annoying bass sounds when listening to a person speaking. The treble control might be used to give the percussion a sharper or more "brilliant" sound, or can be used to cut such high frequencies when they have been overemphasized in the program material or simply to accommodate a listener's preference.
A "rumble filter" is a high-pass (low cut) filter with a cutoff typically in the 20 to 40 Hz range; this is the low frequency end of human hearing. "Rumble" is a type of low-frequency noise produced in record players and turntables, particularly older or low quality models. The rumble filter prevents this noise from being amplified and sent to the loudspeakers. Some cassette decks have a switchable "subsonic filter" feature that does the same thing for recordings.
A crossover network is a system of filters designed to direct electrical energy separately to the woofer and tweeter of a 2-way speaker system (and also to the mid-range speaker of a 3-way system). This is most often built into the speaker enclosure and hidden from the user. However, in bi-amplification, these filters operate on the low level audio signals, sending the low-frequency and high-frequency signal components to separate amplifiers, which connect to the woofers and tweeters, respectively.
Equalization is used in a reciprocal manner in certain communication channels and recording technologies. The original music is passed through a particular filter to alter its frequency balance, followed by the channel or recording process. At the end of the channel or when the recording is played, a complementary filter is inserted which precisely compensates for the original filter and recovers the original waveform. For instance, FM broadcasting uses a pre-emphasis filter to boost the high frequencies before transmission, and every receiver includes a matching de-emphasis filter to restore it. The white noise that is introduced by the radio is then also de-emphasized at the higher frequencies (where it is most noticeable) along with the pre-emphasized program, making the noise less audible. Tape recorders used the same approach to reduce "tape hiss" while maintaining fidelity. On the other hand, in the production of vinyl records, a filter is used to reduce the amplitude of low frequencies which otherwise produce large amplitudes on the tracks of a record. Then the groove can take up less physical space, fitting more music on the record. The preamplifier attached to the phono cartridge has a complementary filter boosting those low frequencies, following the standard RIAA equalization curve.