Katana VentraIP

History of life

The history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago (abbreviated as Ga, for gigaannum) and evidence suggests that life emerged prior to 3.7 Ga.[1][2][3] The similarities among all known present-day species indicate that they have diverged through the process of evolution from a common ancestor.[4]

"History of evolution" redirects here. Not to be confused with History of evolutionary thought.

The earliest clear evidence of life comes from biogenic carbon signatures[2][3] and stromatolite fossils[5] discovered in 3.7 billion-year-old metasedimentary rocks from western Greenland. In 2015, possible "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia.[6][7] There is further evidence of possibly the oldest forms of life in the form of fossilized microorganisms in hydrothermal vent precipitates from the Nuvvuagittuq Belt, that may have lived as early as 4.28 billion years ago, not long after the oceans formed 4.4 billion years ago, and after the Earth formed 4.54 billion years ago.[8][9] These earliest fossils, however, may have originated from non-biological processes.[1][10][7][11]


Microbial mats of coexisting bacteria and archaea were the dominant form of life in the early Archean eon, and many of the major steps in early evolution are thought to have taken place in this environment.[12] The evolution of photosynthesis by cyanobacteria, around 3.5 Ga, eventually led to a buildup of its waste product, oxygen, in the oceans. After free oxygen saturated all available reductant substances on the Earth's surface, it built up in the atmosphere, leading to the Great Oxygenation Event around 2.4 Ga.[13] The earliest evidence of eukaryotes (complex cells with organelles) dates from 1.85 Ga,[14][15] likely due to symbiogenesis between anaerobic archaea and aerobic proteobacteria in co-adaptation against the new oxidative stress. While eukaryotes may have been present earlier, their diversification accelerated when aerobic cellular respiration by the endosymbiont mitochondria provided a more abundant source of biological energy. Around 1.6 Ga, some eukaryotes gained the ability to photosynthesize via endosymbiosis with cyanobacteria, and gave rise to various algae that eventually overtook cyanobacteria as the dominant primary producers.


At around 1.7 Ga, multicellular organisms began to appear, with differentiated cells performing specialised functions.[16] While early organisms reproduced asexually, the primary method of reproduction for the vast majority of macroscopic organisms, including almost all eukaryotes (which includes animals and plants), is sexual reproduction, the fusion of male and female reproductive cells (gametes) to create a zygote.[17] The origin and evolution of sexual reproduction remain a puzzle for biologists, though it is thought to have evolved from a single-celled eukaryotic ancestor.[18]


While microorganisms formed the earliest terrestrial ecosystems at least 2.7 Ga, the evolution of plants from freshwater green algae dates back to about 1 billion years ago.[19][20] Microorganisms are thought to have paved the way for the inception of land plants in the Ordovician period. Land plants were so successful that they are thought to have contributed to the Late Devonian extinction event[21] as early tree archaeopteris drew down CO2 levels, leading to global cooling and lowered sea levels, while their roots increased rock weathering and nutrient run-offs which may have triggered algal bloom anoxic events.


Bilateria, animals having a left and a right side that are mirror images of each other, appeared by 555 Ma (million years ago).[22] Ediacara biota appeared during the Ediacaran period,[23] while vertebrates, along with most other modern phyla originated about 525 Ma during the Cambrian explosion.[24] During the Permian period, synapsids, including the ancestors of mammals, dominated the land.[25]


The Permian–Triassic extinction event killed most complex species of its time, 252 Ma.[26] During the recovery from this catastrophe, archosaurs became the most abundant land vertebrates;[27] one archosaur group, the dinosaurs, dominated the Jurassic and Cretaceous periods.[28] After the Cretaceous–Paleogene extinction event 66 Ma killed off the non-avian dinosaurs,[29] mammals increased rapidly in size and diversity.[30] Such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify.[31]


Only a very small percentage of species have been identified: one estimate claims that Earth may have 1 trillion species, because "identifying every microbial species on Earth presents a huge challenge."[32][33] Only 1.75–1.8 million species have been named[34][35] and 1.8 million documented in a central database.[36] The currently living species represent less than one percent of all species that have ever lived on Earth.[37][38]

They removed more carbon dioxide from the atmosphere, reducing the and thus causing an ice age in the Carboniferous period.[21] This did not repeat in later ecosystems, since the carbon dioxide "locked up" in wood was returned to the atmosphere by decomposition of dead wood, but the earliest fossil evidence of fungi that can decompose wood also comes from the Late Devonian.[220]

greenhouse effect

The increasing depth of plants' roots led to more washing of nutrients into rivers and seas by rain. This caused whose high consumption of oxygen caused anoxic events in deeper waters, increasing the extinction rate among deep-water animals.[21]

algal blooms

The oceans may have become more hospitable to life over the last 500 Ma and less vulnerable to mass extinctions: dissolved oxygen became more widespread and penetrated to greater depths; the development of life on land reduced the run-off of nutrients and hence the risk of and anoxic events; and marine ecosystems became more diversified so that food chains were less likely to be disrupted.[270][271]

eutrophication

Reasonably complete fossils are very rare, most extinct organisms are represented only by partial fossils, and complete fossils are rarest in the oldest rocks. So paleontologists have mistakenly assigned parts of the same organism to different genera, which were often defined solely to accommodate these finds—the story of is an example of this. The risk of this mistake is higher for older fossils because these are often both unlike parts of any living organism and poorly conserved. Many of the "superfluous" genera are represented by fragments which are not found again and the "superfluous" genera appear to become extinct very quickly.[269]

Anomalocaris

Life on Earth has suffered occasional mass extinctions at least since 542 Ma. Although they were disasters at the time, mass extinctions have sometimes accelerated the evolution of life on Earth. When dominance of particular ecological niches passes from one group of organisms to another, it is rarely because the new dominant group is "superior" to the old and usually because an extinction event eliminates the old dominant group and makes way for the new one.[31][268]


The fossil record appears to show that the gaps between mass extinctions are becoming longer and that the average and background rates of extinction are decreasing. Both of these phenomena could be explained in one or more ways:[269]


Biodiversity in the fossil record, which is "...the number of distinct genera alive at any given time; that is, those whose first occurrence predates and whose last occurrence postdates that time"[272] shows a different trend: a fairly swift rise from 542 to 400 Ma; a slight decline from 400 to 200 Ma, in which the devastating Permian–Triassic extinction event is an important factor; and a swift rise from 200 Ma to the present.[272]

(1989). The Selfish Gene (New ed.). Oxford; New York: Oxford University Press. ISBN 978-0-19-286092-7. LCCN 89016077. OCLC 20012195.

Dawkins, Richard

Dawkins, Richard (2004). . Boston: Houghton Mifflin Company. ISBN 978-0-618-00583-3. LCCN 2004059864. OCLC 56617123.

The Ancestor's Tale: A Pilgrimage to the Dawn of Life

; Szathmáry, Eörs (1997) [1995; Oxford: W. H. Freeman/Spektrum]. The Major Transitions in Evolution. Oxford; New York: Oxford University Press. ISBN 978-0-19-850294-4. LCCN 94026965. OCLC 715217397.

Smith, John Maynard

(ed.). "The Complete Work of Charles Darwin Online". Retrieved 2015-02-23.

van Wyhe, John

Price, R. G. . rationalrevolution.net. Retrieved 2015-02-23.

"Understanding Evolution: History, Theory, Evidence, and Implications"

. The Virtual Fossil Museum. Retrieved 2015-02-22. General information on evolution compiled by Roger Perkins.

"Evolution"

. University of California, Berkeley. Retrieved 2020-12-25.

"Understanding Evolution"

. Washington, D.C.: National Academies. Retrieved 2020-12-25.

"Evolution Resources"

. Archived from the original on 2020-12-15. Retrieved 2020-12-25. Tree of life diagram by Neal Olander.

"Tree of Life"

. New Scientist. Retrieved 2020-12-25.

"Evolution"

How Evolution Works at HowStuffWorks

Brain, Marshall

. Palomar College. Retrieved 2020-12-25. Tutorial created by Dennis O'Neil.

"Modern Theories of Evolution: An Introduction to the Concepts and Theories That Led to Our Current Understanding of Evolution"