History of statistics
Statistics, in the modern sense of the word, began evolving in the 18th century in response to the novel needs of industrializing sovereign states.
In early times, the meaning was restricted to information about states, particularly demographics such as population. This was later extended to include all collections of information of all types, and later still it was extended to include the analysis and interpretation of such data. In modern terms, "statistics" means both sets of collected information, as in national accounts and temperature record, and analytical work which requires statistical inference. Statistical activities are often associated with models expressed using probabilities, hence the connection with probability theory. The large requirements of data processing have made statistics a key application of computing. A number of statistical concepts have an important impact on a wide range of sciences. These include the design of experiments and approaches to statistical inference such as Bayesian inference, each of which can be considered to have their own sequence in the development of the ideas underlying modern statistics.
Introduction[edit]
By the 18th century, the term "statistics" designated the systematic collection of demographic and economic data by states. For at least two millennia, these data were mainly tabulations of human and material resources that might be taxed or put to military use. In the early 19th century, collection intensified, and the meaning of "statistics" broadened to include the discipline concerned with the collection, summary, and analysis of data. Today, data is collected and statistics are computed and widely distributed in government, business, most of the sciences and sports, and even for many pastimes. Electronic computers have expedited more elaborate statistical computation even as they have facilitated the collection and aggregation of data. A single data analyst may have available a set of data-files with millions of records, each with dozens or hundreds of separate measurements. These were collected over time from computer activity (for example, a stock exchange) or from computerized sensors, point-of-sale registers, and so on. Computers then produce simple, accurate summaries, and allow more tedious analyses, such as those that require inverting a large matrix or perform hundreds of steps of iteration, that would never be attempted by hand. Faster computing has allowed statisticians to develop "computer-intensive" methods which may look at all permutations, or use randomization to look at 10,000 permutations of a problem, to estimate answers that are not easy to quantify by theory alone.
The term "mathematical statistics" designates the mathematical theories of probability and statistical inference, which are used in statistical practice. The relation between statistics and probability theory developed rather late, however. In the 19th century, statistics increasingly used probability theory, whose initial results were found in the 17th and 18th centuries, particularly in the analysis of games of chance (gambling). By 1800, astronomy used probability models and statistical theories, particularly the method of least squares. Early probability theory and statistics was systematized in the 19th century and statistical reasoning and probability models were used by social scientists to advance the new sciences of experimental psychology and sociology, and by physical scientists in thermodynamics and statistical mechanics. The development of statistical reasoning was closely associated with the development of inductive logic and the scientific method, which are concerns that move statisticians away from the narrower area of mathematical statistics. Much of the theoretical work was readily available by the time computers were available to exploit them. By the 1970s, Johnson and Kotz produced a four-volume Compendium on Statistical Distributions (1st ed., 1969–1972), which is still an invaluable resource.
Applied statistics can be regarded as not a field of mathematics but an autonomous mathematical science, like computer science and operations research. Unlike mathematics, statistics had its origins in public administration. Applications arose early in demography and economics; large areas of micro- and macro-economics today are "statistics" with an emphasis on time-series analyses. With its emphasis on learning from data and making best predictions, statistics also has been shaped by areas of academic research including psychological testing, medicine and epidemiology. The ideas of statistical testing have considerable overlap with decision science. With its concerns with searching and effectively presenting data, statistics has overlap with information science and computer science.