Linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.
"Linear transformation" redirects here. For fractional linear transformations, see Möbius transformation.
If a linear map is a bijection then it is called a linear isomorphism. In the case where , a linear map is called a linear endomorphism. Sometimes the term linear operator refers to this case,[1] but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that and are real vector spaces (not necessarily with ), or it can be used to emphasize that is a function space, which is a common convention in functional analysis.[2] Sometimes the term linear function has the same meaning as linear map, while in analysis it does not.
A linear map from to always maps the origin of to the origin of . Moreover, it maps linear subspaces in onto linear subspaces in (possibly of a lower dimension);[3] for example, it maps a plane through the origin in to either a plane through the origin in , a line through the origin in , or just the origin in . Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations.
In the language of category theory, linear maps are the morphisms of vector spaces.
Let and be vector spaces over the same field .
A function is said to be a linear map if for any two vectors and any scalar the following two conditions are satisfied:
Thus, a linear map is said to be operation preserving. In other words, it does not matter whether the linear map is applied before (the right hand sides of the above examples) or after (the left hand sides of the examples) the operations of addition and scalar multiplication.
By the associativity of the addition operation denoted as +, for any vectors and scalars the following equality holds:[4][5]
Thus a linear map is one which preserves linear combinations.
Denoting the zero elements of the vector spaces and by and respectively, it follows that Let and in the equation for homogeneity of degree 1:
A linear map with viewed as a one-dimensional vector space over itself is called a linear functional.[6]
These statements generalize to any left-module over a ring without modification, and to any right-module upon reversing of the scalar multiplication.
Applications[edit]
A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to derivatives; or in relativity, used as a device to keep track of the local transformations of reference frames.
Another application of these transformations is in compiler optimizations of nested-loop code, and in parallelizing compiler techniques.