Katana VentraIP

Planet

A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself.[1] The Solar System has eight planets by the most restrictive definition of the term: the terrestrial planets Mercury, Venus, Earth, and Mars, and the giant planets Jupiter, Saturn, Uranus, and Neptune. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called accretion.

This article is about the astronomical object. For other uses, see Planet (disambiguation).

The word planet comes from the Greek πλανήται (planḗtai) 'wanderers'. In antiquity, this word referred to the Sun, Moon, and five points of light visible to the naked eye that moved across the background of the stars—namely, Mercury, Venus, Mars, Jupiter, and Saturn. Planets have historically had religious associations: multiple cultures identified celestial bodies with gods, and these connections with mythology and folklore persist in the schemes for naming newly discovered Solar System bodies. Earth itself was recognized as a planet when heliocentrism supplanted geocentrism during the 16th and 17th centuries.


With the development of the telescope, the meaning of planet broadened to include objects only visible with assistance: the moons of the planets beyond Earth; the ice giants Uranus and Neptune; Ceres and other bodies later recognized to be part of the asteroid belt; and Pluto, later found to be the largest member of the collection of icy bodies known as the Kuiper belt. The discovery of other large objects in the Kuiper belt, particularly Eris, spurred debate about how exactly to define a planet. In 2006, the International Astronomical Union (IAU) adopted a definition of a planet in the Solar System, placing the four terrestrial planets and the four giant planets in the planet category; Ceres, Pluto, and Eris are in the category of dwarf planet.[2][3][4] Many planetary scientists have nonetheless continued to apply the term planet more broadly, including dwarf planets as well as rounded satellites like the Moon.[5]


Further advances in astronomy led to the discovery of over five thousand planets outside the Solar System, termed exoplanets. These often show unusual features that the Solar System planets do not show, such as hot Jupiters—giant planets that orbit close to their parent stars, like 51 Pegasi b—and extremely eccentric orbits, such as HD 20782 b. The discovery of brown dwarfs and planets larger than Jupiter also spurred debate on the definition, regarding where exactly to draw the line between a planet and a star. Multiple exoplanets have been found to orbit in the habitable zones of their stars (where liquid water can potentially exist on a planetary surface), but Earth remains the only planet known to support life.

One satellite of Earth: the

Moon

Four : Io, Europa, Ganymede, and Callisto

satellites of Jupiter

Seven : Mimas, Enceladus, Tethys, Dione, Rhea, Titan, and Iapetus

satellites of Saturn

Five : Miranda, Ariel, Umbriel, Titania, and Oberon

satellites of Uranus

One : Triton

satellite of Neptune

One : Charon

satellite of Pluto

According to the IAU definition, there are eight planets in the Solar System, which are (in increasing distance from the Sun):[2] Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Jupiter is the largest, at 318 Earth masses, whereas Mercury is the smallest, at 0.055 Earth masses.[29]


The planets of the Solar System can be divided into categories based on their composition. Terrestrials are similar to Earth, with bodies largely composed of rock and metal: Mercury, Venus, Earth, and Mars. Earth is the largest terrestrial planet.[30] Giant planets are significantly more massive than the terrestrials: Jupiter, Saturn, Uranus, and Neptune.[30] They differ from the terrestrial planets in composition. The gas giants, Jupiter and Saturn, are primarily composed of hydrogen and helium and are the most massive planets in the Solar System. Saturn is one third as massive as Jupiter, at 95 Earth masses.[31] The ice giants, Uranus and Neptune, are primarily composed of low-boiling-point materials such as water, methane, and ammonia, with thick atmospheres of hydrogen and helium. They have a significantly lower mass than the gas giants (only 14 and 17 Earth masses).[31]


Dwarf planets are gravitationally rounded, but have not cleared their orbits of other bodies. In increasing order of average distance from the Sun, the ones generally agreed among astronomers are Ceres, Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, Eris, and Sedna.[32][33] Ceres is the largest object in the asteroid belt, located between the orbits of Mars and Jupiter. The other eight all orbit beyond Neptune. Orcus, Pluto, Haumea, Quaoar, and Makemake orbit in the Kuiper belt, which is a second belt of small Solar System bodies beyond the orbit of Neptune. Gonggong and Eris orbit in the scattered disc, which is somewhat further out and, unlike the Kuiper belt, is unstable towards interactions with Neptune. Sedna is the largest known detached object, a population that never comes close enough to the Sun to interact with any of the classical planets; the origins of their orbits are still being debated. All nine are similar to terrestrial planets in having a solid surface, but they are made of ice and rock rather than rock and metal. Moreover, all of them are smaller than Mercury, with Pluto being the largest known dwarf planet and Eris being the most massive.[34][35]


There are at least nineteen planetary-mass moons or satellite planets—moons large enough to take on ellipsoidal shapes:[4]


The Moon, Io, and Europa have compositions similar to the terrestrial planets; the others are made of ice and rock like the dwarf planets, with Tethys being made of almost pure ice. Europa is often considered an icy planet, though, because its surface ice layer makes it difficult to study its interior.[4][36] Ganymede and Titan are larger than Mercury by radius, and Callisto almost equals it, but all three are much less massive. Mimas is the smallest object generally agreed to be a geophysical planet, at about six millionths of Earth's mass, though there are many larger bodies that may not be geophysical planets (e.g. Salacia).[32]

The of an orbit describes the elongation of a planet's elliptical (oval) orbit. Planets with low eccentricities have more circular orbits, whereas planets with high eccentricities have more elliptical orbits. The planets and large moons in the Solar System have relatively low eccentricities, and thus nearly circular orbits.[62] The comets and many Kuiper belt objects, as well as several exoplanets, have very high eccentricities, and thus exceedingly elliptical orbits.[64][65]

eccentricity

The gives the size of the orbit. It is the distance from the midpoint to the longest diameter of its elliptical orbit. This distance is not the same as its apastron, because no planet's orbit has its star at its exact centre.[62]

semi-major axis

The of a planet tells how far above or below an established reference plane its orbit is tilted. In the Solar System, the reference plane is the plane of Earth's orbit, called the ecliptic. For exoplanets, the plane, known as the sky plane or plane of the sky, is the plane perpendicular to the observer's line of sight from Earth.[66] The orbits of the eight major planets of the Solar System all lie very close to the ecliptic; however, some smaller objects like Pallas, Pluto, and Eris orbit at far more extreme angles to it, as do comets.[67] The large moons are generally not very inclined to their parent planets' equators, but Earth's Moon, Saturn's Iapetus, and Neptune's Triton are exceptions. Triton is unique among the large moons in that it orbits retrograde, i.e. in the direction opposite to its parent planet's rotation.[68]

inclination

The points at which a planet crosses above and below its reference plane are called its and descending nodes.[62] The longitude of the ascending node is the angle between the reference plane's 0 longitude and the planet's ascending node. The argument of periapsis (or perihelion in the Solar System) is the angle between a planet's ascending node and its closest approach to its star.[62]

ascending

Helios and Selene were the names of both planets and gods, both of them Titans (later supplanted by Olympians and Artemis);

Apollo

Phainon was sacred to , the Titan who fathered the Olympians;

Cronus

Phaethon was sacred to , Cronus's son who deposed him as king;

Zeus

Pyroeis was given to , son of Zeus and god of war;

Ares

Phosphoros was ruled by , the goddess of love; and

Aphrodite

Stilbon with its speedy motion, was ruled over by , messenger of the gods and god of learning and wit.[164]

Hermes

Photojournal NASA

(educational site with illustrated articles)

Planetary Science Research Discoveries