Katana VentraIP

Riemann sphere

In mathematics, the Riemann sphere, named after Bernhard Riemann,[1] is a model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers.

The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere.


In geometry, the Riemann sphere is the prototypical example of a Riemann surface, and is one of the simplest complex manifolds. In projective geometry, the sphere is an example of a complex projective space and can be thought of as the complex projective line , the projective space of all complex lines in . As with any compact Riemann surface, the sphere may also be viewed as a projective algebraic curve, making it a fundamental example in algebraic geometry. It also finds utility in other disciplines that depend on analysis and geometry, such as the Bloch sphere of quantum mechanics and in other branches of physics.

As the complex projective line[edit]

The Riemann sphere can also be defined as the complex projective line. The points of the complex projective line can be defined as equivalence classes of non-null vectors in the complex vector space : two non-null vectors and are equivalent iff for some non-zero coefficient .


In this case, the equivalence class is written using projective coordinates. Given any point in the complex projective line, one of and must be non-zero, say . Then by the notion of equivalence, , which is in a chart for the Riemann sphere manifold.[3]


This treatment of the Riemann sphere connects most readily to projective geometry. For example, any line (or smooth conic) in the complex projective plane is biholomorphic to the complex projective line. It is also convenient for studying the sphere's automorphisms, later in this article.

Applications[edit]

In complex analysis, a meromorphic function on the complex plane (or on any Riemann surface, for that matter) is a ratio of two holomorphic functions and . As a map to the complex numbers, it is undefined wherever is zero. However, it induces a holomorphic map to the complex projective line that is well-defined even where . This construction is helpful in the study of holomorphic and meromorphic functions. For example, on a compact Riemann surface there are no non-constant holomorphic maps to the complex numbers, but holomorphic maps to the complex projective line are abundant.


The Riemann sphere has many uses in physics. In quantum mechanics, points on the complex projective line are natural values for photon polarization states, spin states of massive particles of spin , and 2-state particles in general (see also Quantum bit and Bloch sphere). The Riemann sphere has been suggested as a relativistic model for the celestial sphere.[4] In string theory, the worldsheets of strings are Riemann surfaces, and the Riemann sphere, being the simplest Riemann surface, plays a significant role. It is also important in twistor theory.

Conformal geometry

Cross-ratio

Dessin d'enfant

Directed infinity

Hopf bundle

Möbius plane

Parallel (operator) § Properties

Projectively extended real line

Smith chart

Wheel theory

Brown, James & Churchill, Ruel (1989). Complex Variables and Applications. New York: McGraw-Hill.  0-07-010905-2.

ISBN

Griffiths, Phillip & Harris, Joseph (1978). Principles of Algebraic Geometry. John Wiley & Sons.  0-471-32792-1.

ISBN

(2005). The Road to Reality. New York: Knopf. ISBN 0-679-45443-8.

Penrose, Roger

Rudin, Walter (1987). Real and Complex Analysis. New York: McGraw–Hill.  0-07-100276-6.

ISBN

, Encyclopedia of Mathematics, EMS Press, 2001 [1994]

"Riemann sphere"

by Douglas N. Arnold and Jonathan Rogness (a video by two University of Minnesota professors explaining and illustrating Möbius transformations using stereographic projection from a sphere)

Moebius Transformations Revealed