Katana VentraIP

Scientific Data Systems

Scientific Data Systems (SDS), was an American computer company founded in September 1961 by Max Palevsky, Arthur Rock and Robert Beck, veterans of Packard Bell Corporation and Bendix, along with eleven other computer scientists. SDS was the first to employ silicon transistors, and was an early adopter of integrated circuits in computer design. The company concentrated on larger scientific workload focused machines and sold many machines to NASA during the Space Race. Most machines were both fast and relatively low priced. The company was sold to Xerox in 1969, but dwindling sales due to the oil crisis of 1973–74 caused Xerox to close the division in 1975 at a loss of hundreds of millions of dollars. During the Xerox years the company was officially Xerox Data Systems (XDS), whose machines were the Xerox 500 series.

Industry

Computers

1961 (1961) in Santa Monica, California

  • 1975
  • 1984 (1984) (UK division)

Xerox Data Systems

History[edit]

Early machines[edit]

Throughout the majority of the 1960s the US computer market was dominated by "Snow White", IBM, and the "Seven Dwarves", Burroughs, UNIVAC, NCR, Control Data Corporation, Honeywell, General Electric, and RCA. SDS entered this well developed market and was able to introduce a time-sharing computer at just the right time. Much of their success was due to the use of silicon-based transistors in their earliest designs, the 24-bit SDS 910 and SDS 920 which included a hardware (integer) multiplier. These are arguably the first commercial systems based on silicon,[1] rather than germanium, which offered much better reliability for no real additional cost.[2]


Additionally, the SDS machines shipped with a selection of software, notably a FORTRAN compiler, developed by Digitek, that made use of the systems' Programmed OPeratorS (POPS),[3][4] and could compile, in 4K 24-bit words, programs in a single pass without the need for magnetic tape secondary storage. For scientific users writing small programs, this was a real boon and dramatically improved development turnaround time.


The 910 and 920 were joined by the SDS 9300, announced in June 1963. Among other changes, the 9300 included a floating point processor for higher performance. The performance increase was dramatic; the 910/920 needed 16 microseconds to add two 24-bit integers, the 9300 only 1.75, almost 10 times as fast. The 9300 also increased maximum memory from 16 kWords to 32 kWords. Although its instruction format resembled that of the earlier machines, it was not compatible with them.


In December 1963 SDS announced the SDS 930, a major re-build of the 9xx line using integrated circuits (ICs) in the central processor. It was comparable to the 9300 in basic operations, but was generally slower overall due to the lack of the 9300's memory interlace capability and hardware floating point unit (although a hardware floating point "correlation and filtering unit" was available as an expensive option). The 930 cost less than half that of the original 9300, at about $105,000 (equivalent to $1,045,000 in 2023). Cut-down versions of the 920 also followed, including the 12-bit SDS 92, and the IC-based 925.


Project Genie developed a segmentation and relocation system for time-sharing use on the 930 at the University of California, Berkeley, which was commercialized in the SDS 940. It had additional hardware for relocation and swapping of memory sections, and interruptible instructions. The 940 would go on to be a major part of Tymshare's circuit-switched network system growth in the 1960s (pre-ARPAnet and before packet-switching). A 945 was announced in July 1968 as a modified 940 with less I/O and the same compute power, but it is unclear whether this shipped.[5]

SDS 92[edit]

The SDS 92[6] is generally accepted as the first commercial computer using monolithic integrated circuits.[7][8] ICs were used on about 50 circuit cards.[5]


The SDS 92 is a small, high-speed, very low-cost, general purpose computer 12-bit system introduced in 1965.[6][9] it was not compatible with other SDS lines such as the 900 series or the Sigma series.[10] Features included:[6]

A new start[edit]

Former SDS employees restarted the company with funding from Max Palevsky, Sanford Kaplan, Dan McGurk, and others in 1979. Jack Mitchell, William L. Scheding, and Henry Harold, along with some other former SDS engineers introduced a microprocessor-based computer called the SDS-420[14] built on a 6502A-based processor design with up to 56 KB of memory and a proprietary OS, SDS-DOS, along with the BASIC programming language from Microsoft. The SDS-420 featured a dual single-sided-double-density (400 KB per side) floppy disk drive, Model 70, manufactured by PerSci (Peripheral Sciences), of Santa Monica and Marina del Rey, California. The SDS-422 Model offered some of the first dual double-sided-double-density floppy drives. Other hardware options were a 6551-A USART and a proprietary network SDS-NET using a Z8530 SDLC/HDLC chip and software patterned after the early Xerox 3.0 Mbit/s Ethernet and transceivers produced by Tat Lam of the Bay Area.


The company sold about 1,000 machines worldwide, including Tahiti, London, Italy, New York City and Los Angeles. The 400 Series had little to do with scientific computing and more with word processing and business services.


SDS announced a fully operational local area network (LAN)-based file server called SDS-NET at COMDEX in the early 1980s. SDS-NET was based on a Model 430 and written by Sam Keys, of Westchester, California. The SDS 430 Server offered file and printer sharing services over SDS-NET or using a modem and was based upon a 10 MB hard disk manufactured by Micropolis of Chatsworth, California. SDS Offered other models, including the SDS-410, a diskless work station that booted and ran off the SDS-NET or optionally could boot off-of and run over a 1200 bit/s modem link.


Products offered were: Word (word processing, written by John McCully, formerly of Jacquard Systems, Manhattan Beach, California), and fully functional accounting software: balance-forward and open-item accounting with General Ledger, Accounts Receivable, Accounts Payable, and Payroll (written by Tom Davies and Sandra Mass, both formerly with Jacquard Systems).


Other offerings included: Legal Time and Billing, Medical Time and Billing, and TTY an early terminal emulation program using the 6551 USART. Through partnerships with their value-added resellers (VARs) other software product offerings included a solid-waste management system with automated truck routing and a country-club accounting package. One UK-based VAR was Jacq-Rite, a vertical market software house run by Ken Groome and Vivienne Gurney and based in Dorking, Surrey. Jacq-Rite had developed a range of specialist insurance software for the Jacquard machine but transferred to the SDS 400 following the advice of John McCully. Jacq-Rite installed several SDS 400 series networks in Lloyd's Managing and Members Agencies during 1982 and 1983. One of Jacq-Rite's programming staff that worked on the software porting was Justin Hill. Jacq-Rite's hardware sales were managed by David Ensor.

SDS in the United Kingdom[edit]

In 1983 Ensor and Hill left Jacq-Rite and formed a company calling itself 'Scientific Data Systems UK Limited' or 'SDS UK' (but actually unrelated to SDS) in Crawley, West Sussex in the UK. This coincided with SDS's announcement of their 4000 series computer; they hoped to build a business around this machine (including supplying it to Jacq-Rite) and negotiated an exclusive arrangement with SDS.


The SDS 4000 was a complete re-design, both cosmetically and with all-new internal hardware, but the architecture was basically the same as the 400 series - and ran the same software. The machine had a 1/2 height 5+14-inch hard disk drive bay and used Seagate 10 and 20 MB hard drives or SyQuest removable drive units. The 4000 motherboard had a SCSI interface (still known as SASI at the time) and an Adaptec 4000 SASI controller board was shoe-horned into the case to connect the drives. The diskette drive was also half-height 5+14-inch (the 400 series had used 8 inch diskettes). Like the 410, there was a diskless version too. Local Area Networking capabilities were carried over from the 400 series.


The 4000's major aesthetic departure from its predecessor was the use of a separate 12-inch tilt-and-swivel Visual Display Unit (VDU) and CPU case. The keyboard was detachable for the first time and the system had a beige colour scheme (dictated by the colour of the third party VDUs) in place of the black and white appearance of the 400.


However, financial problems at SDS were already substantial, and the UK business only ever received a small number of hastily completed machines. In an attempt to bypass these problems Hill produced a clone of the 4000 series computer by reverse-engineering an original model with the aid of a set of paper schematics obtained on a visit to SDS. This was neither approved nor supported by SDS, but Mitchell alone [and not Scheding] made a confidential visit to the UK to help debug the new computer. This was fortunate because, being unable to confer with SDS, Hill had unwittingly used schematics referring to a forthcoming revision of the machine, for which no firmware had yet been completed. Mitchell alone [and not Scheding] finished the new firmware at SDS UK's offices. This meant that Hill's 'unofficial 4000' was actually a later revision than any US machines completed. Hill also improved the board layout, rear-panel connectivity and power supply.


The new machine worked, and a number of examples were made using a prototyping firm in Poole, Dorset. Several were even sold, including a 5-station network with external storage (see below) to the UK Institute of Legal Executives ('ILEX') in Bedford which remained in use for several years. This was supplied with bespoke software (also produced by Hill, with the assistance of Paula Flint) to store examination results and print certificates. However, any hope of selling into the lucrative Lloyd's insurance market in conjunction with Jacq-Rite was short-lived as Jacq-Rite had abandoned SDS and moved to the IBM PC platform, taking their customers with them, as soon as SDS UK was formed. (This decision was also influenced by John McCully, who was now developing his word-processing software for MS-DOS.)


The 'unofficial' 4000 series machine was at least a finished computer, and the small number produced worked reliably. Taking advantage of the SCSI implementation, Hill added an external connector to his version of the machine and developed a matching hard drive enclosure. This enclosure accommodated higher capacity, full-height 5+14-inch drives.


However, the UK company's lack of capital to invest in the machine's manufacture meant that the cosmetic appearance of the computer left a lot to be desired. Furthermore, the machines were extremely costly – IBM's new Personal Computer/AT was shipping at about half the price SDS UK Limited needed to sell their computer for. Relationships between SDS and its UK namesake had broken down completely by this time, and SDS UK did not have the resources to develop new versions of the hardware or operating system.


SDS went out of business in the US 1984. The UK company of the same name ceased trading in the same year.

Berkeley Timesharing System

SDS 9xx computers

Time Magazine, Friday, February 24, 1967

"Enter Max Palevsky"

Charles Babbage Institute, University of Minnesota, Minneapolis

Oral history interview with Paul A. Strassmann

Scientific Data Systems The Sigma Family: Introducing Sigma from Scientific Data Systems. 1967

SDS Sigma 7 technical information

SDS 900 series documentation at bitsavers.org

Sigma series documentation at bitsavers.org

Tymshare documentation at bitsavers.org