Katana VentraIP

Silicon Graphics

Silicon Graphics, Inc. (stylized as SiliconGraphics before 1999, later rebranded SGI, historically known as Silicon Graphics Computer Systems or SGCS) was an American high-performance computing manufacturer, producing computer hardware and software. Founded in Mountain View, California in November 1981 by James Clark, its initial market was 3D graphics computer workstations, but its products, strategies and market positions developed significantly over time.

This article is about Silicon Graphics, Inc. For the company that acquired its assets, see Silicon Graphics International.

Company type

Public

NYSE: SGI
OTC Pink: SGID.pk
Nasdaq: SGIC

November 9, 1981 (1981-11-09)
Mountain View, California, U.S.[1]

May 11, 2009 (2009-05-11)

Early systems were based on the Geometry Engine that Clark and Marc Hannah had developed at Stanford University, and were derived from Clark's broader background in computer graphics. The Geometry Engine was the first very-large-scale integration (VLSI) implementation of a geometry pipeline, specialized hardware that accelerated the "inner-loop" geometric computations needed to display three-dimensional images. For much of its history, the company focused on 3D imaging and was a major supplier of both hardware and software in this market.


Silicon Graphics reincorporated as a Delaware corporation in January 1990. Through the mid to late-1990s, the rapidly improving performance of commodity Wintel machines began to erode SGI's stronghold in the 3D market. The porting of Maya to other platforms was a major event in this process. SGI made several attempts to address this, including a disastrous move from their existing MIPS platforms to the Intel Itanium, as well as introducing their own Linux-based Intel IA-32 based workstations and servers that failed in the market. In the mid-2000s the company repositioned itself as a supercomputer vendor, a move that also failed.


On April 1, 2009, SGI filed for Chapter 11 bankruptcy protection and announced that it would sell substantially all of its assets to Rackable Systems, a deal finalized on May 11, 2009, with Rackable assuming the name Silicon Graphics International. The remains of Silicon Graphics, Inc. became Graphics Properties Holdings, Inc.

- 1998 Display system having floating point rasterization and floating point ..

U.S. patent 6,650,327

- 2002 System, method, and computer program product for near-real time load ..

U.S. patent 6,885,376

- 1998 Large area wide aspect ratio flat panel monitor having high resolution for ..

U.S. patent 6,816,145

- 1995 Data processing system for processing one and two parcel instructions

U.S. patent 5,717,881

Technology[edit]

Motorola 680x0-based systems[edit]

SGI's first generation products, starting with the IRIS (Integrated Raster Imaging System) 1000 series of high-performance graphics terminals, were based on the Motorola 68000 family of microprocessors. The later IRIS 2000 and 3000 models developed into full UNIX workstations.

User base and core market[edit]

Conventional wisdom holds that SGI's core market has traditionally been Hollywood visual effects studios. In fact, SGI's largest revenue has always been generated by government and defense applications, energy, and scientific and technical computing.[60] In one case Silicon Graphics' largest single sale ever was to the United States Postal Service. SGI's servers powered an artificial intelligence program to mechanically read, tag and sort the mail (hand-written and block) at a number of USPS's key mail centers. The rise of cheap yet powerful commodity workstations running Linux, Windows and Mac OS X, and the availability of diverse professional software for them, effectively pushed SGI out of the visual effects industry in all but the most niche markets.

High-end server market[edit]

SGI continued to enhance its line of servers (including some supercomputers) based on the SN architecture. SN, for Scalable Node, is a technology developed by SGI in the mid-1990s that uses cache-coherent non-uniform memory access (cc-NUMA). In an SN system, processors, memory, and a bus- and memory-controller are coupled together into an entity called a node, usually on a single circuit board. Nodes are connected by a high-speed interconnect called NUMAlink (originally marketed as CrayLink). There is no internal bus, and instead access between processors, memory, and I/O devices is done through a switched fabric of links and routers.


Thanks to the cache coherence of the distributed shared memory, SN systems scale along several axes at once: as CPU count increases, so does memory capacity, I/O capacity, and system bisection bandwidth. This allows the combined memory of all the nodes to be accessed under a single OS image using standard shared-memory synchronization methods. This makes an SN system far easier to program and able to achieve higher sustained-to-peak performance than non-cache-coherent systems like conventional clusters or massively parallel computers which require applications code to be written (or re-written) to do explicit message-passing communication between their nodes.


The first SN system, known as SN-0, was released in 1996 under the product name Origin 2000. Based on the MIPS R10000 processor, it scaled from 2 to 128 processors and a smaller version, the Origin 200 (SN-00), scaled from 1 to 4. Later enhancements enabled systems of as large as 512 processors.


The second generation system, originally called SN-1 but later SN-MIPS, was released in July 2000, as the Origin 3000. It scaled from 4 to 512 processors, and 1,024-processor configurations were delivered by special order to some customers. A smaller, less scalable implementation followed, called Origin 300.


In November 2002, SGI announced a repackaging of its SN system, under the name Origin 3900. It quadrupled the processor area density of the SN-MIPS system, from 32 up to 128 processors per rack while moving to a "fat tree" interconnect topology.


In January 2003, SGI announced a variant of the SN platform called the Altix 3000 (internally called SN-IA). It used Intel Itanium 2 processors and ran the Linux operating system kernel. At the time it was released, it was the world's most scalable Linux-based computer, supporting up to 64 processors in a single system node.[61] Nodes could be connected using the same NUMAlink technology to form what SGI predictably termed "superclusters".


In February 2004, SGI announced general support for 128 processor nodes to be followed by 256 and 512 processor versions that year.


In April 2004, SGI announced the sale of its Alias software business for approximately $57 million.[62]


In October 2004, SGI built the supercomputer Columbia, which broke the world record for computer speed, for the NASA Ames Research Center. It was a cluster of 20 Altix supercomputers each with 512 Intel Itanium 2 processors running Linux, and achieved sustained speed of 42.7 trillion floating-point operations per second (teraflops), easily topping Japan's famed Earth Simulator's record of 35.86 teraflops. (A week later, IBM's upgraded Blue Gene/L clocked in at 70.7 teraflops.)


In July 2006, SGI announced an SGI Altix 4700 system with 1,024 processors and 4 TB of memory running a single Linux system image.[63]

series graphics terminals (diskless 1000/1200, 1400/1500 with disks)

IRIS 1000

series workstations (2000/2200/2300/2400/2500 non-Turbo and 2300T/2400T/2500T "Turbo" models)

IRIS 2000

series workstations (3010/3020/3030 and 3110/3115/3120/3130)

IRIS 3000

SCO and SGI

SGI CEO from January 1998 to August 1999

Rick Belluzzo

Silicon Graphics Image

at the Wayback Machine (archived March 27, 2009)

SGI official website (pre-acquisition)

Whatever Happened to SGI?

SGI timeline

Irix Network - information, forums, and archive for SGI machines

Nekochan SGI wiki

IRIS 2000/3000 FAQ

A collection of SGI equipment images

Silicon Graphics User Group