Mathematical logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
For Quine's theory sometimes called "Mathematical Logic", see New Foundations. For other uses, see Logic (disambiguation).Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory showed that almost all ordinary mathematics can be formalized in terms of sets, although there are some theorems that cannot be proven in common axiom systems for set theory. Contemporary work in the foundations of mathematics often focuses on establishing which parts of mathematics can be formalized in particular formal systems (as in reverse mathematics) rather than trying to find theories in which all of mathematics can be developed.
Applications[edit]
"Mathematical logic has been successfully applied not only to mathematics and its foundations (G. Frege, B. Russell, D. Hilbert, P. Bernays, H. Scholz, R. Carnap, S. Lesniewski, T. Skolem), but also to physics (R. Carnap, A. Dittrich, B. Russell, C. E. Shannon, A. N. Whitehead, H. Reichenbach, P. Fevrier), to biology (J. H. Woodger, A. Tarski), to psychology (F. B. Fitch, C. G. Hempel), to law and morals (K. Menger, U. Klug, P. Oppenheim), to economics (J. Neumann, O. Morgenstern), to practical questions (E. C. Berkeley, E. Stamm), and even to metaphysics (J. [Jan] Salamucha, H. Scholz, J. M. Bochenski). Its applications to the history of logic have proven extremely fruitful (J. Lukasiewicz, H. Scholz, B. Mates, A. Becker, E. Moody, J. Salamucha, K. Duerr, Z. Jordan, P. Boehner, J. M. Bochenski, S. [Stanislaw] T. Schayer, D. Ingalls)."[47] "Applications have also been made to theology (F. Drewnowski, J. Salamucha, I. Thomas)."[47]