History[edit]

Van der Waerden's theorem, a precursor of Szemerédi's theorem, was proven in 1927.


The cases k = 1 and k = 2 of Szemerédi's theorem are trivial. The case k = 3, known as Roth's theorem, was established in 1953 by Klaus Roth[2] via an adaptation of the Hardy–Littlewood circle method. Endre Szemerédi[3] proved the case k = 4 through combinatorics. Using an approach similar to the one he used for the case k = 3, Roth[4] gave a second proof for this in 1972.


The general case was settled in 1975, also by Szemerédi,[5] who developed an ingenious and complicated extension of his previous combinatorial argument for k = 4 (called "a masterpiece of combinatorial reasoning" by Erdős[6]). Several other proofs are now known, the most important being those by Hillel Furstenberg[7][8] in 1977, using ergodic theory, and by Timothy Gowers[9] in 2001, using both Fourier analysis and combinatorics. Terence Tao has called the various proofs of Szemerédi's theorem a "Rosetta stone" for connecting disparate fields of mathematics.[10]

Extensions and generalizations[edit]

A multidimensional generalization of Szemerédi's theorem was first proven by Hillel Furstenberg and Yitzhak Katznelson using ergodic theory.[27] Timothy Gowers,[28] Vojtěch Rödl and Jozef Skokan[29][30] with Brendan Nagle, Rödl, and Mathias Schacht,[31] and Terence Tao[32] provided combinatorial proofs.


Alexander Leibman and Vitaly Bergelson[33] generalized Szemerédi's to polynomial progressions: If is a set with positive upper density and are integer-valued polynomials such that , then there are infinitely many such that for all . Leibman and Bergelson's result also holds in a multidimensional setting.


The finitary version of Szemerédi's theorem can be generalized to finite additive groups including vector spaces over finite fields.[34] The finite field analog can be used as a model for understanding the theorem in the natural numbers.[35] The problem of obtaining bounds in the k=3 case of Szemerédi's theorem in the vector space is known as the cap set problem.


The Green–Tao theorem asserts the prime numbers contain arbitrarily long arithmetic progressions. It is not implied by Szemerédi's theorem because the primes have density 0 in the natural numbers. As part of their proof, Ben Green and Tao introduced a "relative" Szemerédi theorem which applies to subsets of the integers (even those with 0 density) satisfying certain pseudorandomness conditions. A more general relative Szemerédi theorem has since been given by David Conlon, Jacob Fox, and Yufei Zhao.[36][37]


The Erdős conjecture on arithmetic progressions would imply both Szemerédi's theorem and the Green–Tao theorem.

Problems involving arithmetic progressions

Ergodic Ramsey theory

Arithmetic combinatorics

Szemerédi regularity lemma

(2007). "The ergodic and combinatorial approaches to Szemerédi's theorem". In Granville, Andrew; Nathanson, Melvyn B.; Solymosi, József (eds.). Additive Combinatorics. CRM Proceedings & Lecture Notes. Vol. 43. Providence, RI: American Mathematical Society. pp. 145–193. arXiv:math/0604456. Bibcode:2006math......4456T. ISBN 978-0-8218-4351-2. MR 2359471. Zbl 1159.11005.

Tao, Terence

Archived 2012-07-16 at the Wayback Machine

PlanetMath source for initial version of this page

– the preprint is available at math.NT/0404188

Announcement by Ben Green and Terence Tao

Discussion of Szemerédi's theorem (part 1 of 5)

Ben Green and Terence Tao: on Scholarpedia

Szemerédi's theorem

"SzemeredisTheorem". MathWorld.

Weisstein, Eric W.

Grime, James; Hodge, David (2012). . Numberphile. Brady Haran. Archived from the original on 2014-01-09. Retrieved 2013-04-02.

"6,000,000: Endre Szemerédi wins the Abel Prize"