Definition[edit]
Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as
if (and only if) the limit of the sequence evaluated at each point in the domain of is equal to , written as
The function is said to be the pointwise limit function of the
The definition easily generalizes from sequences to nets . We say converge pointwises to , written as
if (and only if) is the unique accumulation point of the net evaluated at each point in the domain of , written as
Sometimes, authors use the term bounded pointwise convergence when there is a constant such that .[3]
Properties[edit]
This concept is often contrasted with uniform convergence. To say that
means that
where is the common domain of and , and stands for the supremum. That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent. For example, if is a sequence of functions defined by then pointwise on the interval but not uniformly.
The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example,
takes the value when is an integer and when is not an integer, and so is discontinuous at every integer.
The values of the functions need not be real numbers, but may be in any topological space, in order that the concept of pointwise convergence make sense. Uniform convergence, on the other hand, does not make sense for functions taking values in topological spaces generally, but makes sense for functions taking values in metric spaces, and, more generally, in uniform spaces.
Almost everywhere convergence[edit]
In measure theory, one talks about almost everywhere convergence of a sequence of measurable functions defined on a measurable space. That means pointwise convergence almost everywhere, that is, on a subset of the domain whose complement has measure zero. Egorov's theorem states that pointwise convergence almost everywhere on a set of finite measure implies uniform convergence on a slightly smaller set.
Almost everywhere pointwise convergence on the space of functions on a measure space does not define the structure of a topology on the space of measurable functions on a measure space (although it is a convergence structure). For in a topological space, when every subsequence of a sequence has itself a subsequence with the same subsequential limit, the sequence itself must converge to that limit.
But consider the sequence of so-called "galloping rectangles" functions, which are defined using the floor function: let and mod and let
Then any subsequence of the sequence has a sub-subsequence which itself converges almost everywhere to zero, for example, the subsequence of functions which do not vanish at But at no point does the original sequence converge pointwise to zero. Hence, unlike convergence in measure and convergence, pointwise convergence almost everywhere is not the convergence of any topology on the space of functions.