Number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."[1] Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers).
For the book by André Weil, see Number Theory: An Approach Through History from Hammurapi to Legendre.
Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, for example, as approximated by the latter (Diophantine approximation).
The older term for number theory is arithmetic. By the early twentieth century, it had been superseded by "number theory".[note 1] (The word "arithmetic" is used by the general public to mean "elementary calculations"; it has also acquired other meanings in mathematical logic, as in Peano arithmetic, and computer science, as in floating-point arithmetic.) The use of the term arithmetic for number theory regained some ground in the second half of the 20th century, arguably in part due to French influence.[note 2] In particular, arithmetical is commonly preferred as an adjective to number-theoretic.
Main subdivisions[edit]
Elementary number theory[edit]
The term elementary generally denotes a method that does not use complex analysis. For example, the prime number theorem was first proven using complex analysis in 1896, but an elementary proof was found only in 1949 by Erdős and Selberg.[77] The term is somewhat ambiguous: for example, proofs based on complex Tauberian theorems (for example, Wiener–Ikehara) are often seen as quite enlightening but not elementary, in spite of using Fourier analysis, rather than complex analysis as such. Here as elsewhere, an elementary proof may be longer and more difficult for most readers than a non-elementary one.
The number-theorist Leonard Dickson (1874–1954) said "Thank God that number theory is unsullied by any application". Such a view is no longer applicable to number theory.[86] In 1974, Donald Knuth said "virtually every theorem in elementary number theory arises in a natural, motivated way in connection with the problem of making computers do high-speed numerical calculations".[87]
Elementary number theory is taught in discrete mathematics courses for computer scientists; on the other hand, number theory also has applications to the continuous in numerical analysis.[88]
Number theory has now several modern applications spanning diverse areas such as:
Prizes[edit]
The American Mathematical Society awards the Cole Prize in Number Theory. Moreover, number theory is one of the three mathematical subdisciplines rewarded by the Fermat Prize.
Two of the most popular introductions to the subject are:
Hardy and Wright's book is a comprehensive classic, though its clarity sometimes suffers due to the authors' insistence on elementary methods (Apostol 1981).
Vinogradov's main attraction consists in its set of problems, which quickly lead to Vinogradov's own research interests; the text itself is very basic and close to minimal. Other popular first introductions are:
Popular choices for a second textbook include: