Katana VentraIP

Human skin color

Human skin color ranges from the darkest brown to the lightest hues. Differences in skin color among individuals is caused by variation in pigmentation, which is the result of genetics (inherited from one's biological parents), exposure to the sun, disorders, or some combination thereof. Differences across populations evolved through natural selection or sexual selection, because of social norms and differences in environment, as well as regulations of the biochemical effects of ultraviolet radiation penetrating the skin.[1]

"Skin pigmentation" redirects here. For animal skin pigmentation, see Biological pigment.

The actual skin color of different humans is affected by many substances, although the single most important substance is the pigment melanin. Melanin is produced within the skin in cells called melanocytes and it is the main determinant of the skin color of darker-skin humans. The skin color of people with light skin is determined mainly by the bluish-white connective tissue under the dermis and by the hemoglobin circulating in the veins of the dermis. The red color underlying the skin becomes more visible, especially in the face, when, as consequence of physical exercise or sexual arousal, or the stimulation of the nervous system (anger, embarrassment), arterioles dilate.[2] Color is not entirely uniform across an individual's skin; for example, the skin of the palm and the sole is lighter than most other skin, and this is especially noticeable in darker-skinned people.[3]


There is a direct correlation between the geographic distribution of ultraviolet radiation (UVR) and the distribution of indigenous skin pigmentation around the world. Areas that receive higher amounts of UVR, generally located closer to the equator, tend to have darker-skinned populations. Areas that are far from the tropics and closer to the poles have lower intensity of UVR, which is reflected in lighter-skinned populations.[4] By the time modern Homo sapiens evolved, all humans were dark-skinned.[5][6] Some researchers suggest that human populations over the past 50,000 years have changed from dark-skinned to light-skinned and vice versa as they migrated to different UV zones,[7] and that such major changes in pigmentation may have happened in as little as 100 generations (≈2,500 years) through selective sweeps.[7][8][9] Natural skin color can also darken as a result of tanning due to exposure to sunlight. The leading theory is that skin color adapts to intense sunlight irradiation to provide partial protection against the ultraviolet fraction that produces damage and thus mutations in the DNA of the skin cells.[6][10]


In some populations, women are significantly lighter-skinned than men. However, in other populations, notably those of European descent, men are significantly lighter-skinned than women.[11] European women may have darker skin than European men due to the female sex hormone estrogen, which darkens light skin.[12] Women from darker-skinned populations may have evolved to lighter skin than men so their bodies could absorb more vitamin D during pregnancy, which improves calcium absorption.[13]


The social significance of differences in skin color has varied across cultures and over time, as demonstrated with regard to social status and discrimination.

Age[edit]

In hominids, the parts of the body not covered with hair, like the face and the back of the hands, start out pale in infants and turn darker as the skin is exposed to more sun. All human babies are born pale, regardless of what their adult color will be. In humans, melanin production does not peak until after puberty.[9]


The skin of children becomes darker as they go through puberty and experience the effects of sex hormones.[103] This darkening is especially noticeable in the skin of the nipples, the areola of the nipples, the labia majora in females, and the scrotum in males. In some people, the armpits become slightly darker during puberty. The interaction of genetic, hormonal, and environmental factors on skin coloration with age is still not adequately understood, but it is known that men are at their darkest baseline skin color around the age of 30, without considering the effects of tanning. Around the same age, women experience darkening of some areas of their skin.[9]


Human skin color fades with age. Humans over the age of thirty experience a decrease in melanin-producing cells by about 10% to 20% per decade as melanocyte stem cells gradually die.[104] The skin of face and hands has about twice the amount of pigment cells as unexposed areas of the body, as chronic exposure to the sun continues to stimulate melanocytes. The blotchy appearance of skin color in the face and hands of older people is due to the uneven distribution of pigment cells and to changes in the interaction between melanocytes and keratinocytes.[9]

Sexual dimorphism[edit]

It has been observed that females are found to have lighter skin pigmentation than males in some studied populations.[13] However, in light skinned populations, namely those of European descent, women have darker skin (and eyes) than men.[11][105]


It is unknown why skin color is sexually dimorphic in some populations. White women may have darker skin than white men because the female sex hormone estrogen is known to increase skin pigmentation in lighter-skinned populations.[12] White women's skin is significantly darker than White men's, to the extent that White women have a much lower rate of skin cancer than White men.[12]


In populations where women have lighter skin than men, it has been hypothesized that the requirement for high amounts of calcium during pregnancy and lactation may be related to the dimorphism. Breastfeeding newborns, whose skeletons are growing, require high amounts of calcium intake from the mother's milk (about 4 times more than during prenatal development),[106] part of which comes from reserves in the mother's skeleton. Adequate vitamin D resources are needed to absorb calcium from the diet, and it has been shown that deficiencies of vitamin D and calcium increase the likelihood of various birth defects such as spina bifida and rickets. Natural selection may have led to females with lighter skin than males in some indigenous populations because women must get enough vitamin D and calcium to support the development of fetus and nursing infants and to maintain their own health.[9] However, some authors have cast doubt on the theory that vitamin D synthesis is related to the sexual dimorphism of human akin color in these populations.[107]


The sexes also differ in how they change their skin color with age.[11] Women can change pigmentation in certain parts of their body, such as the areola and nipples during the menstrual cycle and pregnancy. Between 50 and 70% of pregnant women will develop the "mask of pregnancy", which refers to the browning and yellowing of the cheeks, upper lips, and forehead that occurs during pregnancy.[9] This is caused by increases in the female sex hormone estrogen, and it can develop in women who take birth control pills or participate in hormone replacement therapy.[108]

describes the darkening of the skin.

Melasma

describes skin discolorations caused by hormones. These hormonal changes are usually the result of pregnancy, birth control pills or estrogen replacement therapy.

Chloasma

also known as "liver spots" or "senile freckles", refers to darkened spots on the skin caused by aging and the sun. These spots are quite common in adults with a long history of unprotected sun exposure.

Solar lentigo

Geographic variation[edit]

Approximately 10% of the variance in skin color occurs within regions, and approximately 90% occurs between regions.[119] Because skin color has been under strong selective pressure, similar skin colors can result from convergent adaptation rather than from genetic relatedness; populations with similar pigmentation may be genetically no more similar than other widely separated groups. Furthermore, in some parts of the world where people from different regions have mixed extensively, the connection between skin color and ancestry has substantially weakened.[120] In Brazil, for example, skin color is not closely associated with the percentage of recent African ancestors a person has, as estimated from an analysis of genetic variants differing in frequency among continent groups.[121]


In general, people living close to the equator are highly darkly pigmented, and those living near the poles are generally very lightly pigmented. The rest of humanity shows a high degree of skin color variation between these two extremes, generally correlating with UV exposure. The main exception to this rule is in the New World, where people have only lived for about 10,000 to 15,000 years and show a less pronounced degree of skin pigmentation.[9]


In recent times, humans have become increasingly mobile as a consequence of improved technology, domestication, environmental change, strong curiosity, and risk-taking. Migrations over the last 4000 years, and especially the last 400 years, have been the fastest in human history and have led to many people settling in places far away from their ancestral homelands. This means that skin colors today are not as confined to geographical location as they were previously.[9]

BBC News. SLC24A5 gene controls up to 38% of the tonal range in people with mixed European and West African ancestry

"Key gene 'controls skin colour'"

—PBS

"The Biology of Skin Color: Black and White"

YouTube

"The Biology of Skin Color — HHMI BioInteractive Video"