Katana VentraIP

Theorem

In mathematics, a theorem is a statement that has been proved, or can be proved.[a][2][3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.

Not to be confused with Teorema, Theorema, or Theory.

In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic.[b] Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as theorems only the most important results, and use the terms lemma, proposition and corollary for less important theorems.


In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reasoning about them. In this context, statements become well-formed formulas of some formal language. A theory consists of some basis statements called axioms, and some deducing rules (sometimes included in the axioms). The theorems of the theory are the statements that can be derived from the axioms by using the deducing rules.[c] This formalization led to proof theory, which allows proving general theorems about theorems and proofs. In particular, Gödel's incompleteness theorems show that every consistent theory containing the natural numbers has true statements on natural numbers that are not theorems of the theory (that is they cannot be proved inside the theory).


As the axioms are often abstractions of properties of the physical world, theorems may be considered as expressing some truth, but in contrast to the notion of a scientific law, which is experimental, the justification of the truth of a theorem is purely deductive.[6][7]

Theoremhood and truth[edit]

Until the end of the 19th century and the foundational crisis of mathematics, all mathematical theories were built from a few basic properties that were considered as self-evident; for example, the facts that every natural number has a successor, and that there is exactly one line that passes through two given distinct points. These basic properties that were considered as absolutely evident were called postulates or axioms; for example Euclid's postulates. All theorems were proved by using implicitly or explicitly these basic properties, and, because of the evidence of these basic properties, a proved theorem was considered as a definitive truth, unless there was an error in the proof. For example, the sum of the interior angles of a triangle equals 180°, and this was considered as an undoubtable fact.


One aspect of the foundational crisis of mathematics was the discovery of non-Euclidean geometries that do not lead to any contradiction, although, in such geometries, the sum of the angles of a triangle is different from 180°. So, the property "the sum of the angles of a triangle equals 180°" is either true or false, depending whether Euclid's fifth postulate is assumed or denied. Similarly, the use of "evident" basic properties of sets leads to the contradiction of Russell's paradox. This has been resolved by elaborating the rules that are allowed for manipulating sets.


This crisis has been resolved by revisiting the foundations of mathematics to make them more rigorous. In these new foundations, a theorem is a well-formed formula of a mathematical theory that can be proved from the axioms and inference rules of the theory. So, the above theorem on the sum of the angles of a triangle becomes: Under the axioms and inference rules of Euclidean geometry, the sum of the interior angles of a triangle equals 180°. Similarly, Russell's paradox disappears because, in an axiomatized set theory, the set of all sets cannot be expressed with a well-formed formula. More precisely, if the set of all sets can be expressed with a well-formed formula, this implies that the theory is inconsistent, and every well-formed assertion, as well as its negation, is a theorem.


In this context, the validity of a theorem depends only on the correctness of its proof. It is independent from the truth, or even the significance of the axioms. This does not mean that the significance of the axioms is uninteresting, but only that the validity of a theorem is independent from the significance of the axioms. This independence may be useful by allowing the use of results of some area of mathematics in apparently unrelated areas.


An important consequence of this way of thinking about mathematics is that it allows defining mathematical theories and theorems as mathematical objects, and to prove theorems about them. Examples are Gödel's incompleteness theorems. In particular, there are well-formed assertions than can be proved to not be a theorem of the ambient theory, although they can be proved in a wider theory. An example is Goodstein's theorem, which can be stated in Peano arithmetic, but is proved to be not provable in Peano arithmetic. However, it is provable in some more general theories, such as Zermelo–Fraenkel set theory.

Epistemological considerations[edit]

Many mathematical theorems are conditional statements, whose proofs deduce conclusions from conditions known as hypotheses or premises. In light of the interpretation of proof as justification of truth, the conclusion is often viewed as a necessary consequence of the hypotheses. Namely, that the conclusion is true in case the hypotheses are true—without any further assumptions. However, the conditional could also be interpreted differently in certain deductive systems, depending on the meanings assigned to the derivation rules and the conditional symbol (e.g., non-classical logic).


Although theorems can be written in a completely symbolic form (e.g., as propositions in propositional calculus), they are often expressed informally in a natural language such as English for better readability. The same is true of proofs, which are often expressed as logically organized and clearly worded informal arguments, intended to convince readers of the truth of the statement of the theorem beyond any doubt, and from which a formal symbolic proof can in principle be constructed.


In addition to the better readability, informal arguments are typically easier to check than purely symbolic ones—indeed, many mathematicians would express a preference for a proof that not only demonstrates the validity of a theorem, but also explains in some way why it is obviously true. In some cases, one might even be able to substantiate a theorem by using a picture as its proof.


Because theorems lie at the core of mathematics, they are also central to its aesthetics. Theorems are often described as being "trivial", or "difficult", or "deep", or even "beautiful". These subjective judgments vary not only from person to person, but also with time and culture: for example, as a proof is obtained, simplified or better understood, a theorem that was once difficult may become trivial.[8] On the other hand, a deep theorem may be stated simply, but its proof may involve surprising and subtle connections between disparate areas of mathematics. Fermat's Last Theorem is a particularly well-known example of such a theorem.[9]

An or postulate is a fundamental assumption regarding the object of study, that is accepted without proof. A related concept is that of a definition, which gives the meaning of a word or a phrase in terms of known concepts. Classical geometry discerns between axioms, which are general statements; and postulates, which are statements about geometrical objects.[15] Historically, axioms were regarded as "self-evident"; today they are merely assumed to be true.

axiom

A is an unproved statement that is believed to be true. Conjectures are usually made in public, and named after their maker (for example, Goldbach's conjecture and Collatz conjecture). The term hypothesis is also used in this sense (for example, Riemann hypothesis), which should not be confused with "hypothesis" as the premise of a proof. Other terms are also used on occasion, for example problem when people are not sure whether the statement should be believed to be true. Fermat's Last Theorem was historically called a theorem, although, for centuries, it was only a conjecture.

conjecture

A theorem is a statement that has been proven to be true based on axioms and other theorems.

A is a theorem of lesser importance, or one that is considered so elementary or immediately obvious, that it may be stated without proof. This should not be confused with "proposition" as used in propositional logic. In classical geometry the term "proposition" was used differently: in Euclid's Elements (c. 300 BCE), all theorems and geometric constructions were called "propositions" regardless of their importance.

proposition

A is an "accessory proposition" - a proposition with little applicability outside its use in a particular proof. Over time a lemma may gain in importance and be considered a theorem, though the term "lemma" is usually kept as part of its name (e.g. Gauss's lemma, Zorn's lemma, and the fundamental lemma).

lemma

A is a proposition that follows immediately from another theorem or axiom, with little or no required proof.[16] A corollary may also be a restatement of a theorem in a simpler form, or for a special case: for example, the theorem "all internal angles in a rectangle are right angles" has a corollary that "all internal angles in a square are right angles" - a square being a special case of a rectangle.

corollary

A of a theorem is a theorem with a similar statement but a broader scope, from which the original theorem can be deduced as a special case (a corollary). [d]

generalization

A number of different terms for mathematical statements exist; these terms indicate the role statements play in a particular subject. The distinction between different terms is sometimes rather arbitrary, and the usage of some terms has evolved over time.


Other terms may also be used for historical or customary reasons, for example:


A few well-known theorems have even more idiosyncratic names, for example, the division algorithm, Euler's formula, and the Banach–Tarski paradox.

Lore[edit]

It has been estimated that over a quarter of a million theorems are proved every year.[18]


The well-known aphorism, "A mathematician is a device for turning coffee into theorems", is probably due to Alfréd Rényi, although it is often attributed to Rényi's colleague Paul Erdős (and Rényi may have been thinking of Erdős), who was famous for the many theorems he produced, the number of his collaborations, and his coffee drinking.[19]


The classification of finite simple groups is regarded by some to be the longest proof of a theorem. It comprises tens of thousands of pages in 500 journal articles by some 100 authors. These papers are together believed to give a complete proof, and several ongoing projects hope to shorten and simplify this proof.[20] Another theorem of this type is the four color theorem whose computer generated proof is too long for a human to read. It is among the longest known proofs of a theorem whose statement can be easily understood by a layman.

Compactness of first-order logic

Completeness of first-order logic

Gödel's incompleteness theorems of first-order arithmetic

Consistency of first-order arithmetic

Tarski's undefinability theorem

Church-Turing theorem of undecidability

Löb's theorem

Löwenheim–Skolem theorem

Lindström's theorem

Craig's theorem

Cut-elimination theorem

List of theorems

List of theorems called fundamental

Formula

Inference

Toy theorem

Boolos, George; Burgess, John; Jeffrey, Richard (2007). Computability and Logic (5th ed.). Cambridge University Press.

Chiswell, Ian; Hodges, Wilfred (2007). Mathematical Logic. Oxford University Press.

Enderton, Herbert (2001). A Mathematical Introduction to Logic (2nd ed.). Harcourt Academic Press.

(1897). The works of Archimedes. Dover. Retrieved 2009-11-15.

Heath, Sir Thomas Little

Hedman, Shawn (2004). A First Course in Logic. Oxford University Press.

Hinman, Peter (2005). Fundamentals of Mathematical Logic. Wellesley, MA: A K Peters.

Hoffman, P. (1998). : The Story of Paul Erdős and the Search for Mathematical Truth. Hyperion, New York. ISBN 1-85702-829-5.

The Man Who Loved Only Numbers

Hodges, Wilfrid (1993). Model Theory. Cambridge University Press.

(1996) [1973]. Metalogic: An Introduction to the Metatheory of Standard First Order Logic. University of California Press. ISBN 0-520-02356-0.

Hunter, Geoffrey

Johnstone, P. T. (1987). Notes on Logic and Set Theory. Cambridge University Press.

(1972). Elementary Logic. Oxford University Press. ISBN 0-19-501491-X.

Mates, Benson

Monk, J. Donald (1976). Mathematical Logic. Springer-Verlag.

Petkovsek, Marko; Wilf, Herbert; Zeilberger, Doron (1996). . A.K. Peters, Wellesley, Massachusetts. ISBN 1-56881-063-6.

A = B

Rautenberg, Wolfgang (2010). A Concise Introduction to Mathematical Logic (3rd ed.). Springer.

van Dalen, Dirk (1994). Logic and Structure (3rd ed.). Springer-Verlag.

Media related to Theorems at Wikimedia Commons

"Theorem". MathWorld.

Weisstein, Eric W.

Theorem of the Day