Katana VentraIP

Overtone

An overtone is any resonant frequency above the fundamental frequency of a sound. (An overtone may or may not be a harmonic)[1] In other words, overtones are all pitches higher than the lowest pitch within an individual sound; the fundamental is the lowest pitch. While the fundamental is usually heard most prominently, overtones are actually present in any pitch except a true sine wave.[2] The relative volume or amplitude of various overtone partials is one of the key identifying features of timbre, or the individual characteristic of a sound.[3]

"Overtones" redirects here. For other uses, see Overtones (disambiguation).

Using the model of Fourier analysis, the fundamental and the overtones together are called partials. Harmonics, or more precisely, harmonic partials, are partials whose frequencies are numerical integer multiples of the fundamental (including the fundamental, which is 1 times itself). These overlapping terms are variously used when discussing the acoustic behavior of musical instruments.[4] (See etymology below.) The model of Fourier analysis provides for the inclusion of inharmonic partials, which are partials whose frequencies are not whole-number ratios of the fundamental (such as 1.1 or 2.14179).


When a resonant system such as a blown pipe or plucked string is excited, a number of overtones may be produced along with the fundamental tone. In simple cases, such as for most musical instruments, the frequencies of these tones are the same as (or close to) the harmonics. Examples of exceptions include the circular drum – a timpani whose first overtone is about 1.6 times its fundamental resonance frequency,[5] gongs and cymbals, and brass instruments. The human vocal tract is able to produce highly variable amplitudes of the overtones, called formants, which define different vowels.[6]

Explanation[edit]

Most oscillators, from a plucked guitar string to a flute that is blown, will naturally vibrate at a series of distinct frequencies known as normal modes. The lowest normal mode frequency is known as the fundamental frequency, while the higher frequencies are called overtones. Often, when an oscillator is excited — for example, by plucking a guitar string — it will oscillate at several of its modal frequencies at the same time. So when a note is played, this gives the sensation of hearing other frequencies (overtones) above the lowest frequency (the fundamental).


Timbre is the quality that gives the listener the ability to distinguish between the sound of different instruments. The timbre of an instrument is determined by which overtones it emphasizes. That is to say, the relative volumes of these overtones to each other determines the specific "flavor", "color" or "tone" of sound of that family of instruments. The intensity of each of these overtones is rarely constant for the duration of a note. Over time, different overtones may decay at different rates, causing the relative intensity of each overtone to rise or fall independent of the overall volume of the sound. A carefully trained ear can hear these changes even in a single note. This is why the timbre of a note may be perceived differently when played staccato or legato.


A driven non-linear oscillator, such as the vocal folds, a blown wind instrument, or a bowed violin string (but not a struck guitar string or bell) will oscillate in a periodic, non-sinusoidal manner. This generates the impression of sound at integer multiple frequencies of the fundamental known as harmonics, or more precisely, harmonic partials. For most string instruments and other long and thin instruments such as a bassoon, the first few overtones are quite close to integer multiples of the fundamental frequency, producing an approximation to a harmonic series. Thus, in music, overtones are often called harmonics. Depending upon how the string is plucked or bowed, different overtones can be emphasized.


However, some overtones in some instruments may not be of a close integer multiplication of the fundamental frequency, thus causing a small dissonance. "High quality" instruments are usually built in such a manner that their individual notes do not create disharmonious overtones. In fact, the flared end of a brass instrument is not to make the instrument sound louder, but to correct for tube length “end effects” that would otherwise make the overtones significantly different from integer harmonics. This is illustrated by the following:


Consider a guitar string. Its idealized 1st overtone would be exactly twice its fundamental if its length were shortened by ½, perhaps by lightly pressing a guitar string at the 12th fret; however, if a vibrating string is examined, it will be seen that the string does not vibrate flush to the bridge and nut, but it instead has a small “dead length” of string at each end.[7] This dead length actually varies from string to string, being more pronounced with thicker and/or stiffer strings. This means that halving the physical string length does not halve the actual string vibration length, and, hence, the overtones will not be exact multiples of a fundamental frequency. The effect is so pronounced that properly set up guitars will angle the bridge such that the thinner strings will progressively have a length up to few millimeters shorter than the thicker strings. Not doing so would result in inharmonious chords made up of two or more strings. Similar considerations apply to tube instruments.

through the partials of a given fundamental, ascending or descending, fast, or slow

glissando

use vowels/text for relative pitch gestures on indeterminate partials specifying the given shape without specifying particular partials

improvise on partials of the given fundamental, , freely, or in giving style or manner

ad lib.

find and sustain a particular partial (requires interval recognition)

by extension, move to an adjacent partial, above or below, and alternate between the two

Combination tone

Harmonic

Just intonation

Mersenne's laws

(in vibrational spectroscopy)

Overtone band

Scale of harmonics

Stretched octave

Undertone series

Xenharmonic music

Overtones, partials and harmonics from fundamental frequency

Timbre: The Color of Music