Katana VentraIP

Harmonic series (music)

A harmonic series (also overtone series) is the sequence of harmonics, musical tones, or pure tones whose frequency is an integer multiple of a fundamental frequency.

Pitched musical instruments are often based on an acoustic resonator such as a string or a column of air, which oscillates at numerous modes simultaneously. At the frequencies of each vibrating mode, waves travel in both directions along the string or air column, reinforcing and canceling each other to form standing waves. Interaction with the surrounding air causes audible sound waves, which travel away from the instrument. Because of the typical spacing of the resonances, these frequencies are mostly limited to integer multiples, or harmonics, of the lowest frequency, and such multiples form the harmonic series.


The musical pitch of a note is usually perceived as the lowest partial present (the fundamental frequency), which may be the one created by vibration over the full length of the string or air column, or a higher harmonic chosen by the player. The musical timbre of a steady tone from such an instrument is strongly affected by the relative strength of each harmonic.

Terminology [edit]

Partial, harmonic, fundamental, inharmonicity, and overtone[edit]

A "complex tone" (the sound of a note with a timbre particular to the instrument playing the note) "can be described as a combination of many simple periodic waves (i.e., sine waves) or partials, each with its own frequency of vibration, amplitude, and phase".[1] (See also, Fourier analysis.)


A partial is any of the sine waves (or "simple tones", as Ellis calls them[2] when translating Helmholtz) of which a complex tone is composed, not necessarily with an integer multiple of the lowest harmonic.


A harmonic is any member of the harmonic series, an ideal set of frequencies that are positive integer multiples of a common fundamental frequency. The fundamental is a harmonic because it is one times itself. A harmonic partial is any real partial component of a complex tone that matches (or nearly matches) an ideal harmonic.[3]


An inharmonic partial is any partial that does not match an ideal harmonic. Inharmonicity is a measure of the deviation of a partial from the closest ideal harmonic, typically measured in cents for each partial.[4]


Many pitched acoustic instruments are designed to have partials that are close to being whole-number ratios with very low inharmonicity; therefore, in music theory, and in instrument design, it is convenient, although not strictly accurate, to speak of the partials in those instruments' sounds as "harmonics", even though they may have some degree of inharmonicity. The piano, one of the most important instruments of western tradition, contains a certain degree of inharmonicity among the frequencies generated by each string. Other pitched instruments, especially certain percussion instruments, such as marimba, vibraphone, tubular bells, timpani, and singing bowls contain mostly inharmonic partials, yet may give the ear a good sense of pitch because of a few strong partials that resemble harmonics. Unpitched, or indefinite-pitched instruments, such as cymbals and tam-tams make sounds (produce spectra) that are rich in inharmonic partials and may give no impression of implying any particular pitch.


An overtone is any partial above the lowest partial. The term overtone does not imply harmonicity or inharmonicity and has no other special meaning other than to exclude the fundamental. It is mostly the relative strength of the different overtones that give an instrument its particular timbre, tone color, or character. When writing or speaking of overtones and partials numerically, care must be taken to designate each correctly to avoid any confusion of one for the other, so the second overtone may not be the third partial, because it is the second sound in a series.[5]


Some electronic instruments, such as synthesizers, can play a pure frequency with no overtones (a sine wave). Synthesizers can also combine pure frequencies into more complex tones, such as to simulate other instruments. Certain flutes and ocarinas are very nearly without overtones.

Interval strength[edit]

David Cope (1997) suggests the concept of interval strength,[12] in which an interval's strength, consonance, or stability (see consonance and dissonance) is determined by its approximation to a lower and stronger, or higher and weaker, position in the harmonic series. See also: Lipps–Meyer law.


Thus, an equal-tempered perfect fifth (play) is stronger than an equal-tempered minor third (play), since they approximate a just perfect fifth (play) and just minor third (play), respectively. The just minor third appears between harmonics 5 and 6 while the just fifth appears lower, between harmonics 2 and 3.

Fourier series

Klang (music)

Otonality and Utonality

Piano acoustics

Scale of harmonics

Undertone series

(1896). Dictionary of Music. Translated by John South Shedlock. London: Augener & Co.

Riemann, Hugo

Sources

Coul, Manuel Op de. . Huygens-Fokker Foundation centre for microtonal music. Retrieved 2016-06-15.

"List of intervals (Compiled)"

Datta, A. K.; Sengupta, R.; Dey, N.; Nag, D. (2006). . Kolkata, India: SRD ITC SRA. pp. I–X, 1–103. ISBN 81-903818-0-6. Archived from the original on 2012-01-18.

Experimental Analysis of Shrutis from Performances in Hindustani Music

(1865). Die Lehre von dem Tonempfindungen. Zweite ausgabe (in German). Braunschweig: Vieweg und Sohn. pp. I–XII, 1–606. Retrieved 2016-10-12. (see Sensations of Tone)

Helmholtz, H.

IEV (1994). . International Electrotechnical Commission. Retrieved 2016-06-15.

"Electropedia: The World's Online Electrotechnical Vocabulary"

(1911). "Harmonic Analysis" . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 12 (11th ed.). Cambridge University Press. pp. 956, 958.

Lamb, Horace

(1974). Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments (PDF) (2nd enlarged ed.). New York: Da Capo Press. ISBN 0-306-80106-X. Retrieved 2016-06-15.

Partch, Harry

Schouten, J. F. (February 24, 1940). (PDF). Eindhoven, Holland: Natuurkundig Laboratorium der N. V. Philips' Gloeilampenfabrieken (communicated by Prof. G. Holst at the meeting). pp. 356–65. Retrieved 2016-09-26.

The residue, a new component in subjective sound analysis

Волконский, Андрей Михайлович (1998). (in Russian). Композитор, Москва. ISBN 5-85285-184-1. Retrieved 2016-06-15.

Основы темперации

Тюлин, Юрий Николаевич (1966). Беспалова, Н. (ed.). Учение о гармонии [The teaching on harmony] (in Russian) (Издание Третье, Исправленное и Дополненное = Third Edition, Revised and Enlarged ed.). Moscow: Музыка.