Violin construction and mechanics
A violin consists of a body or corpus, a neck, a finger board, a bridge, a soundpost, four strings, and various fittings. The fittings are the tuning pegs, tailpiece and tailgut, endpin, possibly one or more fine tuners on the tailpiece, and in the modern style of playing, usually a chinrest, either attached with the cup directly over the tailpiece or to the left of it. There are many variations of chinrests: center-mount types such as Flesch or Guarneri, clamped to the body on both sides of the tailpiece, and side-mount types clamped to the lower bout to the left of the tailpiece.
Tailpiece[edit]
The tailpiece may be wood, metal, carbon fiber, or plastic, and anchors the strings to the lower bout of the violin by means of the tailgut, nowadays most often a loop of stout nylon monofilament that rides over the saddle (a block of ebony set into the edge of the top) and goes around the endpin. The endpin fits into a tapered hole in the bottom block. Most often the material of the endpin is chosen to match the other fittings, for example, ebony, rosewood or boxwood.
Very often the E string will have a fine tuning lever worked by a small screw turned by the fingers. Fine tuners may also be applied to the other strings and are sometimes built into the tailpiece. Fine tuners are usually used with solid metal or composite strings that may be difficult to tune with pegs alone; they are not used with gut strings, which have greater flexibility and don't respond adequately to the very small changes in tension of fine tuners. Some violinists, particularly beginners or those who favor metal strings, use fine tuners on all four strings. Using a fine tuner on the E string or built-in fine tuners limits the extent to which their added mass affects the sound of the instrument.[1]
Bow[edit]
The bow consists of a stick with a ribbon of horsehair strung between the tip and frog (or nut, or heel) at opposite ends. At the frog end, a screw adjuster tightens or loosens the hair. The frog may be decorated with two eyes made of shell, with or without surrounding metal rings. A flat slide usually made of ebony and shell covers the mortise where the hair is held by its wedge. A metal ferrule holds the hair-spreading wedge and the shell slide in place. Just forward of the frog, a leather grip or thumb cushion protects the stick and provides grip for the violinist's hand. Forward of the leather, a winding serves a similar purpose, as well as affecting the balance of the bow. The winding may be wire, silk, or whalebone (now imitated by alternating strips of yellow and black plastic.) Some student bows, particularly the ones made of solid fiberglass, substitute a plastic sleeve for grip and winding.
The stick was traditionally made of pernambuco - the heartwood of the brazilwood tree - but due to overharvesting and near extinction at its original source, other woods and materials, such as ironwood or graphite, are more commonly used. Some student bows are made of fiberglass. Recent innovations have allowed carbon-fiber to be used as a material for the stick at all levels of craftsmanship. The hair of the bow traditionally comes from the tail of a white male horse, although some cheaper bows use synthetic fiber. The hair must be rubbed with rosin occasionally so it will grip the strings and cause them to vibrate;[2] new or unrosined bow hair simply slides and produces no sound. Bow hair is regularly replaced when the ribbon becomes skimpy or unbalanced from hair breakage or bow bug damage or the violinist feels the hair has "lost its grip."
Acoustics[edit]
It has been known for a long time that the shape, or arching, as well as the thickness of the wood and its physical qualities govern the sound of a violin. The sound and tone of the violin is determined by how the belly and back plates of the violin behave acoustically, according to modes or schemes of movement determined by German physicist Ernst Chladni. Patterns of the nodes (places of no movement) made by sand or glitter sprinkled on the plates with the plate vibrated at certain frequencies are called "Chladni patterns", and are occasionally used by luthiers to verify their work before assembling the instrument. A scientific explanation includes a discussion of how the properties of the wood determine where the nodes occur, whether the plates move with end or diagonally opposite points rising together or in various mixed modes. This is why the most expensive violin in the world is of Stradivari Violins. Stradivari's lutherie visibly improves, as does his choice of wood. He incorporates an intense red, golden varnish into his instruments. Another important fact was the change in the arching of the top plate, meaning the instrument was less flexible, adding more resistance in the plate so the musician could play deeper sounds with this stronger core.[3]
Sizes[edit]
Children learning the violin often use "fractional-sized" violins: 3/4, 1/2, 1/4, 1/8, 1/10, 1/16, and sometimes even 1/32 sized instruments are used. These numbers do not represent numerically accurate size relationships, i.e., a "1/2 size" violin is not half the length of a full-sized violin.
The body length (not including the neck) of a 'full-size' or 4/4 violin is 356 mm (14.0 in) (or smaller in some models of the 17th century). A 3/4 violin is 335 mm (13.2 in), and a 1/2 size is 310 mm (12 in). Rarely, one finds a size referred to as 7/8 which is approximately 340 mm (13.5 in), sometimes called a "ladies' fiddle." Viola size is specified as body length rather than fractional sizes. A 'full-size' viola averages 400 mm (16 in), but may range as long as 450 or 500 mm (18 or 20 in). Such extremely long instruments may be humorously referred to as "chin cellos." Occasionally, a violin may be strung with viola strings in order to serve as a 350 mm (14 in) viola.