Katana VentraIP

Formation and evolution of the Solar System

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud.[1] Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

This model, known as the nebular hypothesis, was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace. Its subsequent development has interwoven a variety of scientific disciplines including astronomy, chemistry, geology, physics, and planetary science. Since the dawn of the Space Age in the 1950s and the discovery of exoplanets in the 1990s, the model has been both challenged and refined to account for new observations.


The Solar System has evolved considerably since its initial formation. Many moons have formed from circling discs of gas and dust around their parent planets, while other moons are thought to have formed independently and later to have been captured by their planets. Still others, such as Earth's Moon, may be the result of giant collisions. Collisions between bodies have occurred continually up to the present day and have been central to the evolution of the Solar System. Beyond Neptune, many sub-planet sized objects formed. Several thousand trans-Neptunian objects have been observed. Unlike the planets, these trans-Neptunian objects mostly move on eccentric orbits, inclined to the plane of the planets. The positions of the planets might have shifted due to gravitational interactions.[2] Planetary migration may have been responsible for much of the Solar System's early evolution.


In roughly 5 billion years, the Sun will cool and expand outward to many times its current diameter (becoming a red giant), before casting off its outer layers as a planetary nebula and leaving behind a stellar remnant known as a white dwarf. In the distant future, the gravity of passing stars will gradually reduce the Sun's retinue of planets. Some planets will be destroyed, and others ejected into interstellar space. Ultimately, over the course of tens of billions of years, it is likely that the Sun will be left with none of the original bodies in orbit around it.[3]

Co-formation from a circumplanetary disc (only in the cases of the giant planets);

Formation from impact debris (given a large enough impact at a shallow angle); and

Capture of a passing object.

Moons have come to exist around most planets and many other Solar System bodies. These natural satellites originated by one of three possible mechanisms:


Jupiter and Saturn have several large moons, such as Io, Europa, Ganymede and Titan, which may have originated from discs around each giant planet in much the same way that the planets formed from the disc around the Sun.[87][88][89] This origin is indicated by the large sizes of the moons and their proximity to the planet. These attributes are impossible to achieve via capture, while the gaseous nature of the primaries also makes formation from collision debris unlikely. The outer moons of the giant planets tend to be small and have eccentric orbits with arbitrary inclinations. These are the characteristics expected of captured bodies.[90][91] Most such moons orbit in the direction opposite to the rotation of their primary. The largest irregular moon is Neptune's moon Triton, which is thought to be a captured Kuiper belt object.[82]


Moons of solid Solar System bodies have been created by both collisions and capture. Mars's two small moons, Deimos and Phobos, are thought to be captured asteroids.[92] The Earth's Moon is thought to have formed as a result of a single, large head-on collision.[93][94] The impacting object probably had a mass comparable to that of Mars, and the impact probably occurred near the end of the period of giant impacts. The collision kicked into orbit some of the impactor's mantle, which then coalesced into the Moon.[93] The impact was probably the last in a series of mergers that formed the Earth. It has been further hypothesized that the Mars-sized object may have formed at one of the stable Earth–Sun Lagrangian points (either L4 or L5) and drifted from its position.[95] The moons of trans-Neptunian objects Pluto (Charon) and Orcus (Vanth) may also have formed by means of a large collision: the Pluto–Charon, Orcus–Vanth and Earth–Moon systems are unusual in the Solar System in that the satellite's mass is at least 1% that of the larger body.[96][97]

Duncan, Martin J.; Lissauer, Jack J. (1997). "Orbital Stability of the Uranian Satellite System". Icarus. 125 (1): 1–12. :1997Icar..125....1D. doi:10.1006/icar.1996.5568.

Bibcode

Zeilik, Michael A.; Gregory, Stephen A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing.  0-03-006228-4.

ISBN

from skyandtelescope.com showing the early evolution of the outer Solar System.

7M animation

QuickTime animation of the future collision between the Milky Way and Andromeda

(Video at Space.com)

How the Sun Will Die: And What Happens to Earth