Katana VentraIP

Sound card

A sound card (also known as an audio card) is an internal expansion card that provides input and output of audio signals to and from a computer under the control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

Connects to

Motherboard via one of:

Line in or out via one of:

Microphone via one of:

  • Phone connector
  • PIN connector

Sound functionality can also be integrated onto the motherboard, using components similar to those found on plug-in cards. The integrated sound system is often still referred to as a sound card. Sound processing hardware is also present on modern video cards with HDMI to output sound along with the video using that connector; previously they used a S/PDIF connection to the motherboard or sound card.


Typical uses of sound cards or sound card functionality include providing the audio component for multimedia applications such as music composition, editing video or audio, presentation, education and entertainment (games) and video projection. Sound cards are also used for computer-based communication such as voice over IP and teleconferencing.

Sound devices other than expansion cards[edit]

Integrated sound hardware on PC motherboards[edit]

In 1984, the first IBM PCjr had a rudimentary 3-voice sound synthesis chip (the SN76489) which was capable of generating three square-wave tones with variable amplitude, and a pseudo-white noise channel that could generate primitive percussion sounds. The Tandy 1000, initially a clone of the PCjr, duplicated this functionality, with the Tandy 1000 TL/SL/RL models adding digital sound recording and playback capabilities. Many games during the 1980s that supported the PCjr's video standard (described as Tandy-compatible, Tandy graphics, or TGA) also supported PCjr/Tandy 1000 audio.


In the late 1990s, many computer manufacturers began to replace plug-in sound cards with an audio codec chip (a combined audio AD/DA-converter) integrated into the motherboard. Many of these used Intel's AC'97 specification. Others used inexpensive ACR slot accessory cards.


From around 2001, many motherboards incorporated full-featured sound cards, usually in the form of a custom chipset, providing something akin to full Sound Blaster compatibility and relatively high-quality sound. However, these features were dropped when AC'97 was superseded by Intel's HD Audio standard, which was released in 2004, again specified the use of a codec chip, and slowly gained acceptance. As of 2011, most motherboards have returned to using a codec chip, albeit an HD Audio compatible one, and the requirement for Sound Blaster compatibility relegated to history.

Integrated sound on other platforms[edit]

Various non-IBM PC compatible computers, such as early home computers like the Commodore 64 (1982) (and by extension Commodore 128 in 1985) and Amiga (1985), NEC's PC-88, Fujitsu's FM-7 and FM Towns, Sharp's X1 and X68000, Acorn's BBC Micro, Electron and Archimedes, Atari's 8-bit home computers, ST and Falcon, Amstrad's CPC, later revisions of Sinclair's ZX Spectrum, the MSX,[15] Apple's Macintosh and IIGS, and workstations from manufacturers like Sun, Silicon Graphics and NeXT have had their own motherboard-integrated sound devices. In some cases, most notably in those of the Macintosh, IIGS, Amiga, C64, SGI Indigo, X68000, MSX, Falcon, Archimedes, FM-7 and FM Towns, they provide very advanced capabilities (as of the time of manufacture), in others they are only minimal capabilities. Some of these platforms have also had sound cards designed for their bus architectures that cannot be used in a standard PC.


Several Japanese computer platforms, including the MSX, X1, X68000, FM Towns and FM-7, featured built-in FM synthesis sound from Yamaha by the mid-1980s. By 1989, the FM Towns computer platform featured built-in PCM sample-based sound and supported the CD-ROM format.[15]


The custom sound chip on Amiga, named Paula, had four digital sound channels (2 for the left speaker and 2 for the right) with 8-bit resolution[f] for each channel and a 6-bit volume control per channel. Sound playback on Amiga was done by reading directly from the chip RAM without using the main CPU.


Most arcade games have integrated sound chips, the most popular being the Yamaha OPL chip for music coupled with a variety of DACs for sampled audio and sound effects.

Sound cards have a limited sample rate, typically up to 192 kHz. Under the assumptions of the , this means a maximum signal frequency (bandwidth) of half that: 96 kHz. Real sound cards tend to have a bandwidth smaller than implied by the Nyquist limit from internal filtering.[23]

Nyquist–Shannon sampling theorem

As with all ADCs and DACs, sound cards produce distortion and noise. A typical integrated sound card, the ALC887, according to its data sheet has distortion of about 80 dB below the fundamental; cards are available with distortion better than −100 dB.

Realtek

Sound cards commonly suffer from some clock drift, requiring correction of measurement results.

programs for the IBM PC often had to use universal middleware driver libraries (such as the HMI Sound Operating System, the Miles Audio Interface Libraries (AIL), the Miles Sound System etc.) which had drivers for most common sound cards, since DOS itself had no real concept of a sound card. Some card manufacturers provided terminate-and-stay-resident drivers for their products. Often the driver is a Sound Blaster and AdLib emulator designed to allow their products to emulate a Sound Blaster and AdLib, and to allow games that could only use SoundBlaster or AdLib sound to work with the card. Finally, some programs simply had driver or middleware source code incorporated into the program itself for the sound cards that were supported.

DOS

uses drivers generally written by the sound card manufacturers. Many device manufacturers supply the drivers on their own discs or to Microsoft for inclusion on Windows installation disc. USB audio device class support is present from Windows 98 SE onwards.[30] Since Microsoft's Universal Audio Architecture (UAA) initiative which supports HD Audio, FireWire and USB audio device class standards, a universal class driver by Microsoft can be used. The driver is included with Windows Vista. For Windows XP, Windows 2000 or Windows Server 2003, the driver can be obtained by contacting Microsoft support.[31] Almost all manufacturer-supplied drivers for such devices also include this universal class driver.

Microsoft Windows

A number of versions of make use of the portable Open Sound System (OSS). Drivers are seldom produced by the card manufacturer.

UNIX

Most present day make use of the Advanced Linux Sound Architecture (ALSA).[h]

Linux distributions

Mockingboard support on the Apple II is usually incorporated into the programs itself as many programs for the Apple II boot directly from disk. However a TSR is shipped on a disk that adds instructions to Apple Basic so users can create programs that use the card, provided that the TSR is loaded first.

To use a sound card, the operating system (OS) typically requires a specific device driver, a low-level program that handles the data connections between the physical hardware and the operating system. Some operating systems include the drivers for many cards; for cards not so supported, drivers are supplied with the card, or available for download.

Audio signal processing

(XACT)

Cross-platform Audio Creation Tool

DirectMusic

DirectSound

EAX

OpenAL

PC System Design Guide

Sound card mixer

at the Wayback Machine (archived 2013-05-06)

Jumper settings for many sound cards

. How Stuff Works. Archived from the original on 2017-12-22. Retrieved 2017-12-16.

"How sound cards work"