Transcatheter aortic valve replacement
Transcatheter aortic valve implantation (TAVI) is the implantation of the aortic valve of the heart through the blood vessels without actual removal of the native valve (as opposed to the aortic valve replacement by open heart surgery, surgical aortic valve replacement, AVR). The first TAVI was performed on 16 April 2002 by Alain Cribier, which became a new alternative in the management of high-risk patients with severe aortic stenosis.[2][3] The implantated valve is delivered via one of several access methods: transfemoral (in the upper leg), transapical (through the wall of the heart), subclavian (beneath the collar bone), direct aortic (through a minimally invasive surgical incision into the aorta), and transcaval (from a temporary hole in the aorta near the navel through a vein in the upper leg), among others.
For Territorial Army Volunteer Reserve (TAVR), see Army Reserve (United Kingdom).Transcatheter aortic valve replacement
Successful rate: 92%.[1]
Severe symptomatic aortic stenosis carries a poor prognosis. At present, there is no treatment via medication, making the timing of aortic valve replacement the most important decision to make for these patients.[4] Until recently, surgical aortic valve replacement was the standard treatment for adults with severe symptomatic aortic stenosis. However, the risks associated with surgical aortic valve replacement are increased in elderly patients and those with concomitant severe systolic heart failure or coronary artery disease, as well as in people with comorbidities such as cerebrovascular and peripheral arterial disease, chronic kidney disease, and chronic respiratory dysfunction.
Overview[edit]
Patients with symptomatic severe aortic stenosis have a mortality rate of approximately 50% at 2 years without intervention.[5] In patients who are deemed too high risk for open heart surgery, TAVI significantly reduces the rates of death and cardiac symptoms.[6] Until about 2017 TAVI was not routinely recommended for low-risk patients in favor of aortic valve replacement, however it is increasingly being offered to intermediate risk patients, based on studies finding that it is not inferior to surgical aortic valve replacement.[7]
Transapical TAVI is reserved for patients for whom other approaches are not feasible: an evidence-based BMJ Rapid Recommendation made a strong recommendation against transapical TAVI in people who are also candidates for either transfemoral TAVI or surgery.[8] People who have the option of either transfemoral TAVI or surgical replacement are likely to choose surgery if they are younger than 75 and transfemoral TAVI if they are older than 75.[8] The rationale for age-based recommendations is that surgical aortic valve replacements are known to be durable long-term (average of durability of 20 years), so people with longer life expectancy would be at higher risk if TAVI durability is worse than surgery.[9]
Devices[edit]
Medtronic's CoreValve Transcatheter Aortic Valve is constructed of a self-expanding Nitinol (nickel titanium) frame and delivered through the femoral artery. This device received FDA approval in January 2014.[10][11][12]
Boston Scientific's Lotus Valve system was awarded CE approval in October 2013. It allows the final position to be assessed and evaluated before release and has been designed to minimise regurgitation.[12] Boston Scientific has since retired the device as of January 11, 2021.[13] This was primarily due to difficulty regarding the ability to reposition and recapture the valve.
St Jude Medical's Portico Transcatheter aortic valve received European CE mark approval in December 2013. The valve is repositionable before release to ensure accurate placement helping to improve patient outcomes.[12]
Edwards' Sapien aortic valve is made from bovine pericardial tissue and is implanted via a catheter-based delivery system. It is approved by the FDA for use in the US.[10][11][12]
After-care[edit]
Regular medical checkups and imaging tests are required after TAVI.[19]
The Mayo Clinic says that blood thinners (anticoagulants) are prescribed to prevent blood clots after TAVI. Artificial heart valves are susceptible to bacterial infection; most bacteria that cause heart valve infections come from the mouth, so that good dental hygiene and routine dental cleaning are recommended. Antibiotics are prescribed for use before certain dental procedures.[19]
New or worse post-procedure symptoms that require attention include dizziness or light-headedness, swelling of the ankles, sudden weight gain, extreme fatigue with activity, and signs of infection. Emergency attention is required for chest pain, pressure or tightness, severe, sudden shortness of breath, or fainting.[19]
Complications[edit]
When PAVR surgery is performed an important and difficult aspect that affects the patient is the orientation, uniformity and depth at which the valve is inserted. When the valve is not inserted correctly, when there is incomplete sealing between the native heart valve and the stented valve, paravalvular leak (PVL) can occur. Key properties associated with paravalvular leak are the regurgitation volume, the PVL orifice location (anterior or posterior) and the associated fluid dynamic effects that occur from the interactions between the regurgitated flow and the normal transmitral flow.
Morisawa et al.[20] carried out quantitative research to determine how the PVL flow effected normal transmitral flow based on three different in-vitro situations: no PVL, anterior orifice PVL and posterior orifice PVL. The results showed that while the two PVL cases worsened the fluid dynamics of the normal transmitral flow seen without leakage, the posterior orifice PVL was worse, leading to a higher circulation and kinetic energy, requiring the heart to work harder and consume more energy to maintain normal bodily functions.
Additionally, the "Big 5 of TAVI complications" include paravalvular leakage (PVL), major bleeding or vascular complications, acute kidney injury (AKI), stroke, and conduction abnormalities, such as high-degree AV-block with need for permanent pacemaker implantation must be monitored to ensure successful procedural outcomes such as low mortality and morbidity.[21]
There is a ~3% risk of stroke associated with TAVI due to embolism or altered hemodynamics during or after the procedure.[22] Approximately 70% of patients undergoing TAVI show signs of clinically silent brain infarcts on neuroimaging afterwards.[23][22] Further, levels of the neuroaxonal damage biomarker neurofilament light chain are elevated in blood plasma after TAVI.[24] Whereas clinical stroke is associated with reduced quality of life and cognitive impairment, the significance of silent brain infarcts and elevated levels of neurofilament light is presently unclear.
History[edit]
The catheter procedure was invented and developed in Aarhus University Hospital Denmark in 1989 by Henning Rud Andersen,[28] who performed the first animal implantations that year.[29] The first implantation in a human was performed on 16 April 2002 by Alain Cribier in Hopital Charles Nicolle, at the University of Rouen, France.[30] Technology experts Stan Rowe and Stan Rabinowitz partnered with physicians Alain Cribier and Martin Leon of NewYork–Presbyterian Hospital and others to create the company Percutaneous Valve Technologies (PVT) in 2002. The company was purchased by Edwards Lifesciences in 2004; its valve became the Sapien valve.[31][32] It was the first aortic valve device to receive FDA approval, in November 2011 for use in inoperable patients and in October 2012 for use in patients at high surgical risk.[33] The device is effective in improving functioning in patients with severe aortic stenosis. It is now approved in more than 50 countries.
Internationally famous pop singer Mick Jagger had the procedure in March 2019 at NewYork–Presbyterian,[34] which was said to have raised public awareness.[35]