Automated theorem proving
Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science.
Logical foundations[edit]
While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics. Frege's Begriffsschrift (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic.[1] His Foundations of Arithmetic, published in 1884,[2] expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential Principia Mathematica, first published 1910–1913,[3] and with a revised second edition in 1927.[4] Russell and Whitehead thought they could derive all mathematical truth using axioms and inference rules of formal logic, in principle opening up the process to automatisation. In 1920, Thoralf Skolem simplified a previous result by Leopold Löwenheim, leading to the Löwenheim–Skolem theorem and, in 1930, to the notion of a Herbrand universe and a Herbrand interpretation that allowed (un)satisfiability of first-order formulas (and hence the validity of a theorem) to be reduced to (potentially infinitely many) propositional satisfiability problems.[5]
In 1929, Mojżesz Presburger showed that the first-order theory of the natural numbers with addition and equality (now called Presburger arithmetic in his honor) is decidable and gave an algorithm that could determine if a given sentence in the language was true or false.[6][7]
However, shortly after this positive result, Kurt Gödel published On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1931), showing that in any sufficiently strong axiomatic system there are true statements that cannot be proved in the system. This topic was further developed in the 1930s by Alonzo Church and Alan Turing, who on the one hand gave two independent but equivalent definitions of computability, and on the other gave concrete examples of undecidable questions.
First implementations[edit]
Shortly after World War II, the first general-purpose computers became available. In 1954, Martin Davis programmed Presburger's algorithm for a JOHNNIAC vacuum-tube computer at the Institute for Advanced Study in Princeton, New Jersey. According to Davis, "Its great triumph was to prove that the sum of two even numbers is even".[7][8] More ambitious was the Logic Theorist in 1956, a deduction system for the propositional logic of the Principia Mathematica, developed by Allen Newell, Herbert A. Simon and J. C. Shaw. Also running on a JOHNNIAC, the Logic Theorist constructed proofs from a small set of propositional axioms and three deduction rules: modus ponens, (propositional) variable substitution, and the replacement of formulas by their definition. The system used heuristic guidance, and managed to prove 38 of the first 52 theorems of the Principia.[7]
The "heuristic" approach of the Logic Theorist tried to emulate human mathematicians, and could not guarantee that a proof could be found for every valid theorem even in principle. In contrast, other, more systematic algorithms achieved, at least theoretically, completeness for first-order logic. Initial approaches relied on the results of Herbrand and Skolem to convert a first-order formula into successively larger sets of propositional formulae by instantiating variables with terms from the Herbrand universe. The propositional formulas could then be checked for unsatisfiability using a number of methods. Gilmore's program used conversion to disjunctive normal form, a form in which the satisfiability of a formula is obvious.[7][9]
Related problems[edit]
A simpler, but related, problem is proof verification, where an existing proof for a theorem is certified valid. For this, it is generally required that each individual proof step can be verified by a primitive recursive function or program, and hence the problem is always decidable.
Since the proofs generated by automated theorem provers are typically very large, the problem of proof compression is crucial, and various techniques aiming at making the prover's output smaller, and consequently more easily understandable and checkable, have been developed.
Proof assistants require a human user to give hints to the system. Depending on the degree of automation, the prover can essentially be reduced to a proof checker, with the user providing the proof in a formal way, or significant proof tasks can be performed automatically. Interactive provers are used for a variety of tasks, but even fully automatic systems have proved a number of interesting and hard theorems, including at least one that has eluded human mathematicians for a long time, namely the Robbins conjecture.[10][11] However, these successes are sporadic, and work on hard problems usually requires a proficient user.
Another distinction is sometimes drawn between theorem proving and other techniques, where a process is considered to be theorem proving if it consists of a traditional proof, starting with axioms and producing new inference steps using rules of inference. Other techniques would include model checking, which, in the simplest case, involves brute-force enumeration of many possible states (although the actual implementation of model checkers requires much cleverness, and does not simply reduce to brute force).
There are hybrid theorem proving systems that use model checking as an inference rule. There are also programs that were written to prove a particular theorem, with a (usually informal) proof that if the program finishes with a certain result, then the theorem is true. A good example of this was the machine-aided proof of the four color theorem, which was very controversial as the first claimed mathematical proof that was essentially impossible to verify by humans due to the enormous size of the program's calculation (such proofs are called non-surveyable proofs). Another example of a program-assisted proof is the one that shows that the game of Connect Four can always be won by the first player.
Applications[edit]
Commercial use of automated theorem proving is mostly concentrated in integrated circuit design and verification. Since the Pentium FDIV bug, the complicated floating point units of modern microprocessors have been designed with extra scrutiny. AMD, Intel and others use automated theorem proving to verify that division and other operations are correctly implemented in their processors.[12]
Other uses of theorem provers include program synthesis, constructing programs that satisfy a formal specification.[13] Automated theorem provers have been integrated with proof assistants, including Isabelle/HOL.[14]
Applications of theorem provers are also found in natural language processing and formal semantics, where they are used to analyze discourse representations.[15][16]
The quality of implemented systems has benefited from the existence of a large library of standard benchmark examples—the Thousands of Problems for Theorem Provers (TPTP) Problem Library[25]—as well as from the CADE ATP System Competition (CASC), a yearly competition of first-order systems for many important classes of first-order problems.
Some important systems (all have won at least one CASC competition division) are listed below.
The Theorem Prover Museum[27] is an initiative to conserve the sources of theorem prover systems for future analysis, since they are important cultural/scientific artefacts. It has the sources of many of the systems mentioned above.