Katana VentraIP

Scientific law

Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena.[1] The term law has diverse usage in many cases (approximate, accurate, broad, or narrow) across all fields of natural science (physics, chemistry, astronomy, geoscience, biology). Laws are developed from data and can be further developed through mathematics; in all cases they are directly or indirectly based on empirical evidence. It is generally understood that they implicitly reflect, though they do not explicitly assert, causal relationships fundamental to reality, and are discovered rather than invented.[2]

"Laws of the universe" redirects here. For the anime film series, see The Laws of the Universe.

Scientific laws summarize the results of experiments or observations, usually within a certain range of application. In general, the accuracy of a law does not change when a new theory of the relevant phenomenon is worked out, but rather the scope of the law's application, since the mathematics or statement representing the law does not change. As with other kinds of scientific knowledge, scientific laws do not express absolute certainty, as mathematical theorems or identities do. A scientific law may be contradicted, restricted, or extended by future observations.


A law can often be formulated as one or several statements or equations, so that it can predict the outcome of an experiment. Laws differ from hypotheses and postulates, which are proposed during the scientific process before and during validation by experiment and observation. Hypotheses and postulates are not laws, since they have not been verified to the same degree, although they may lead to the formulation of laws. Laws are narrower in scope than scientific theories, which may entail one or several laws.[3] Science distinguishes a law or theory from facts.[4] Calling a law a fact is ambiguous, an overstatement, or an equivocation.[5] The nature of scientific laws has been much discussed in philosophy, but in essence scientific laws are simply empirical conclusions reached by scientific method; they are intended to be neither laden with ontological commitments nor statements of logical absolutes.

Overview[edit]

A scientific law always applies to a physical system under repeated conditions, and it implies that there is a causal relationship involving the elements of the system. Factual and well-confirmed statements like "Mercury is liquid at standard temperature and pressure" are considered too specific to qualify as scientific laws. A central problem in the philosophy of science, going back to David Hume, is that of distinguishing causal relationships (such as those implied by laws) from principles that arise due to constant conjunction.[6]


Laws differ from scientific theories in that they do not posit a mechanism or explanation of phenomena: they are merely distillations of the results of repeated observation. As such, the applicability of a law is limited to circumstances resembling those already observed, and the law may be found to be false when extrapolated. Ohm's law only applies to linear networks; Newton's law of universal gravitation only applies in weak gravitational fields; the early laws of aerodynamics, such as Bernoulli's principle, do not apply in the case of compressible flow such as occurs in transonic and supersonic flight; Hooke's law only applies to strain below the elastic limit; Boyle's law applies with perfect accuracy only to the ideal gas, etc. These laws remain useful, but only under the specified conditions where they apply.


Many laws take mathematical forms, and thus can be stated as an equation; for example, the law of conservation of energy can be written as , where is the total amount of energy in the universe. Similarly, the first law of thermodynamics can be written as , and Newton's second law can be written as While these scientific laws explain what our senses perceive, they are still empirical (acquired by observation or scientific experiment) and so are not like mathematical theorems which can be proved purely by mathematics.


Like theories and hypotheses, laws make predictions; specifically, they predict that new observations will conform to the given law. Laws can be falsified if they are found in contradiction with new data.


Some laws are only approximations of other more general laws, and are good approximations with a restricted domain of applicability. For example, Newtonian dynamics (which is based on Galilean transformations) is the low-speed limit of special relativity (since the Galilean transformation is the low-speed approximation to the Lorentz transformation). Similarly, the Newtonian gravitation law is a low-mass approximation of general relativity, and Coulomb's law is an approximation to quantum electrodynamics at large distances (compared to the range of weak interactions). In such cases it is common to use the simpler, approximate versions of the laws, instead of the more accurate general laws.


Laws are constantly being tested experimentally to increasing degrees of precision, which is one of the main goals of science. The fact that laws have never been observed to be violated does not preclude testing them at increased accuracy or in new kinds of conditions to confirm whether they continue to hold, or whether they break, and what can be discovered in the process. It is always possible for laws to be invalidated or proven to have limitations, by repeatable experimental evidence, should any be observed. Well-established laws have indeed been invalidated in some special cases, but the new formulations created to explain the discrepancies generalize upon, rather than overthrow, the originals. That is, the invalidated laws have been found to be only close approximations, to which other terms or factors must be added to cover previously unaccounted-for conditions, e.g. very large or very small scales of time or space, enormous speeds or masses, etc. Thus, rather than unchanging knowledge, physical laws are better viewed as a series of improving and more precise generalizations.

True, at least within their regime of validity. By definition, there have never been repeatable contradicting observations.

Universal. They appear to apply everywhere in the universe.: 82 

[8]

Simple. They are typically expressed in terms of a single mathematical equation.

Absolute. Nothing in the universe appears to affect them.: 82 

[8]

Stable. Unchanged since first discovered (although they may have been shown to be approximations of more accurate laws),

All-encompassing. Everything in the universe apparently must comply with them (according to observations).

Generally of quantity.[9]: 59 

conservative

Often expressions of existing homogeneities () of space and time.[9]

symmetries

Typically theoretically reversible in time (if non-), although time itself is irreversible.[9]

quantum

Broad. In physics, laws exclusively refer to the broad domain of matter, motion, energy, and force itself, rather than more specific in the universe, such as living systems, e.g. the mechanics of the human body.[10]

systems

Scientific laws are typically conclusions based on repeated scientific experiments and observations over many years and which have become accepted universally within the scientific community. A scientific law is "inferred from particular facts, applicable to a defined group or class of phenomena, and expressible by the statement that a particular phenomenon always occurs if certain conditions be present."[7] The production of a summary description of our environment in the form of such laws is a fundamental aim of science.


Several general properties of scientific laws, particularly when referring to laws in physics, have been identified. Scientific laws are:


The term "scientific law" is traditionally associated with the natural sciences, though the social sciences also contain laws.[11] For example, Zipf's law is a law in the social sciences which is based on mathematical statistics. In these cases, laws may describe general trends or expected behaviors rather than being absolutes.


In natural science, impossibility assertions come to be widely accepted as overwhelmingly probable rather than considered proved to the point of being unchallengeable. The basis for this strong acceptance is a combination of extensive evidence of something not occurring, combined with an underlying theory, very successful in making predictions, whose assumptions lead logically to the conclusion that something is impossible. While an impossibility assertion in natural science can never be absolutely proved, it could be refuted by the observation of a single counterexample. Such a counterexample would require that the assumptions underlying the theory that implied the impossibility be re-examined.


Some examples of widely accepted impossibilities in physics are perpetual motion machines, which violate the law of conservation of energy, exceeding the speed of light, which violates the implications of special relativity, the uncertainty principle of quantum mechanics, which asserts the impossibility of simultaneously knowing both the position and the momentum of a particle, and Bell's theorem: no physical theory of local hidden variables can ever reproduce all of the predictions of quantum mechanics.

: Any quantity with a continuously differentiable symmetry in the action has an associated conservation law.

Noether's theorem

was the first law to be understood since most macroscopic physical processes involving masses, for example, collisions of massive particles or fluid flow, provide the apparent belief that mass is conserved. Mass conservation was observed to be true for all chemical reactions. In general, this is only approximative because with the advent of relativity and experiments in nuclear and particle physics: mass can be transformed into energy and vice versa, so mass is not always conserved but part of the more general conservation of mass–energy.

Conservation of mass

, momentum and angular momentum for isolated systems can be found to be symmetries in time, translation, and rotation.

Conservation of energy

was also realized since charge has never been observed to be created or destroyed and only found to move from place to place.

Conservation of charge

In equilibrium, molecules exist in mixture defined by the transformations possible on the timescale of the equilibrium, and are in a ratio defined by the intrinsic energy of the molecules—the lower the intrinsic energy, the more abundant the molecule. states that the system opposes changes in conditions from equilibrium states, i.e. there is an opposition to change the state of an equilibrium reaction.

Le Chatelier's principle

Transforming one structure to another requires the input of energy to cross an energy barrier; this can come from the intrinsic energy of the molecules themselves, or from an external source which will generally accelerate transformations. The higher the energy barrier, the slower the transformation occurs.

There is a hypothetical intermediate, or transition structure, that corresponds to the structure at the top of the energy barrier. The states that this structure looks most similar to the product or starting material which has intrinsic energy closest to that of the energy barrier. Stabilizing this hypothetical intermediate through chemical interaction is one way to achieve catalysis.

Hammond–Leffler postulate

All chemical processes are reversible (law of ) although some processes have such an energy bias, they are essentially irreversible.

microscopic reversibility

The reaction rate has the mathematical parameter known as the . The Arrhenius equation gives the temperature and activation energy dependence of the rate constant, an empirical law.

rate constant

Chemical laws are those laws of nature relevant to chemistry. Historically, observations led to many empirical laws, though now it is known that chemistry has its foundations in quantum mechanics.


The most fundamental concept in chemistry is the law of conservation of mass, which states that there is no detectable change in the quantity of matter during an ordinary chemical reaction. Modern physics shows that it is actually energy that is conserved, and that energy and mass are related; a concept which becomes important in nuclear chemistry. Conservation of energy leads to the important concepts of equilibrium, thermodynamics, and kinetics.


Additional laws of chemistry elaborate on the law of conservation of mass. Joseph Proust's law of definite composition says that pure chemicals are composed of elements in a definite formulation; we now know that the structural arrangement of these elements is also important.


Dalton's law of multiple proportions says that these chemicals will present themselves in proportions that are small whole numbers; although in many systems (notably biomacromolecules and minerals) the ratios tend to require large numbers, and are frequently represented as a fraction.


The law of definite composition and the law of multiple proportions are the first two of the three laws of stoichiometry, the proportions by which the chemical elements combine to form chemical compounds. The third law of stoichiometry is the law of reciprocal proportions, which provides the basis for establishing equivalent weights for each chemical element. Elemental equivalent weights can then be used to derive atomic weights for each element.


More modern laws of chemistry define the relationship between energy and its transformations.

or Gause's law

Competitive exclusion principle

Arbia's law of geography

Tobler's first law of geography

Tobler's second law of geography

Other fields[edit]

Some mathematical theorems and axioms are referred to as laws because they provide logical foundation to empirical laws.


Examples of other observed phenomena sometimes described as laws include the Titius–Bode law of planetary positions, Zipf's law of linguistics, and Moore's law of technological growth. Many of these laws fall within the scope of uncomfortable science. Other laws are pragmatic and observational, such as the law of unintended consequences. By analogy, principles in other fields of study are sometimes loosely referred to as "laws". These include Occam's razor as a principle of philosophy and the Pareto principle of economics.

a useful book in different formats containing many or the physical laws and formulae.

Physics Formulary

website containing most of the formulae in different disciplines.

Eformulae.com

: "Laws of Nature" by John W. Carroll.

Stanford Encyclopedia of Philosophy

Baaquie, Belal E. . Core Curriculum, National University of Singapore.

"Laws of Physics : A Primer"

Francis, Erik Max. . Physics. Alcyone Systems

"The laws list".

. "Laws of Nature" – By Norman Swartz

The Internet Encyclopedia of Philosophy

In Our Time, BBC Radio 4 discussion with Mark Buchanan, Frank Close and Nancy Cartwright (Oct. 19, 2000)

"Laws of Nature"