Katana VentraIP

Scale (music)

In music theory, a scale is any set of musical notes ordered by fundamental frequency or pitch. A scale ordered by increasing pitch is an ascending scale, and a scale ordered by decreasing pitch is a descending scale.

For psychoacoustic scale, see bark scale and mel scale.

Often, especially in the context of the common practice period, most or all of the melody and harmony of a musical work is built using the notes of a single scale, which can be conveniently represented on a staff with a standard key signature.[1]


Due to the principle of octave equivalence, scales are generally considered to span a single octave, with higher or lower octaves simply repeating the pattern. A musical scale represents a division of the octave space into a certain number of scale steps, a scale step being the recognizable distance (or interval) between two successive notes of the scale.[2] However, there is no need for scale steps to be equal within any scale and, particularly as demonstrated by microtonal music, there is no limit to how many notes can be injected within any given musical interval.


A measure of the width of each scale step provides a method to classify scales. For instance, in a chromatic scale each scale step represents a semitone interval, while a major scale is defined by the interval pattern W–W–H–W–W–W–H, where W stands for whole step (an interval spanning two semitones, e.g. from C to D), and H stands for half-step (e.g. from C to D). Based on their interval patterns, scales are put into categories including diatonic, chromatic, major, minor, and others.


A specific scale is defined by its characteristic interval pattern and by a special note, known as its first degree (or tonic). The tonic of a scale is the note selected as the beginning of the octave, and therefore as the beginning of the adopted interval pattern. Typically, the name of the scale specifies both its tonic and its interval pattern. For example, C major indicates a major scale with a C tonic.

or dodecatonic (12 notes per octave)

Chromatic

(9 notes per octave): a chromatic variation of the heptatonic blues scale

Nonatonic

(8 notes per octave): used in jazz and modern classical music

Octatonic

(7 notes per octave): the most common modern Western scale

Heptatonic

(6 notes per octave): common in Western folk music

Hexatonic

(5 notes per octave): the anhemitonic form (lacking semitones) is common in folk music, especially in Asian music; also known as the "black note" scale

Pentatonic

(4 notes), tritonic (3 notes), and ditonic (2 notes): generally limited to prehistoric ("primitive") music

Tetratonic

The (seven notes)—this includes the major scale and the natural minor

diatonic scale

The melodic and harmonic (seven notes)

minor scales

Scales in traditional Western music generally consist of seven notes and repeat at the octave. Notes in the commonly used scales (see just below) are separated by whole and half step intervals of tones and semitones. The harmonic minor scale includes a three-semitone step; the anhemitonic pentatonic includes two of those and no semitones.


Western music in the Medieval and Renaissance periods (1100–1600) tends to use the white-note diatonic scale C–D–E–F–G–A–B. Accidentals are rare, and somewhat unsystematically used, often to avoid the tritone.


Music of the common practice periods (1600–1900) uses three types of scale:


These scales are used in all of their transpositions. The music of this period introduces modulation, which involves systematic changes from one scale to another. Modulation occurs in relatively conventionalized ways. For example, major-mode pieces typically begin in a "tonic" diatonic scale and modulate to the "dominant" scale a fifth above.


In the 19th century (to a certain extent), but more in the 20th century, additional types of scales were explored:


A large variety of other scales exists, some of the more common being:


Scales such as the pentatonic scale may be considered gapped relative to the diatonic scale. An auxiliary scale is a scale other than the primary or original scale. See: modulation (music) and Auxiliary diminished scale.

Note names[edit]

In many musical circumstances, a specific note of the scale is chosen as the tonic—the central and most stable note of the scale. In Western tonal music, simple songs or pieces typically start and end on the tonic note. Relative to a choice of a certain tonic, the notes of a scale are often labeled with numbers recording how many scale steps above the tonic they are. For example, the notes of the C major scale (C, D, E, F, G, A, B) can be labeled {1, 2, 3, 4, 5, 6, 7}, reflecting the choice of C as tonic. The expression scale degree refers to these numerical labels. Such labeling requires the choice of a "first" note; hence scale-degree labels are not intrinsic to the scale itself, but rather to its modes. For example, if we choose A as tonic, then we can label the notes of the C major scale using A = 1, B = 2, C = 3, and so on. When we do so, we create a new scale called the A minor scale. See the musical note article for how the notes are customarily named in different countries.


The scale degrees of a heptatonic (7-note) scale can also be named using the terms tonic, supertonic, mediant, subdominant, dominant, submediant, subtonic. If the subtonic is a semitone away from the tonic, then it is usually called the leading-tone (or leading-note); otherwise the leading-tone refers to the raised subtonic. Also commonly used is the (movable do) solfège naming convention in which each scale degree is denoted by a syllable. In the major scale, the solfège syllables are: do, re, mi, fa, so (or sol), la, ti (or si), do (or ut).


In naming the notes of a scale, it is customary that each scale degree be assigned its own letter name: for example, the A major scale is written A–B–C–D–E–F–G rather than A–B–D–D–E–Edouble sharp–G. However, it is impossible to do this in scales that contain more than seven notes, at least in the English-language nomenclature system.[8]


Scales may also be identified by using a binary system of twelve zeros or ones to represent each of the twelve notes of a chromatic scale. The most common binary numbering scheme defines lower pitches to have lower numeric value (as opposed to low pitches having a high numeric value). Thus a single pitch class n in the pitch class set is represented by 2^n. This maps the entire power set of all pitch class sets in 12-TET to the numbers 0 to 4095. The binary digits read as ascending pitches from right to left, which some find discombobulating because they are used to low to high reading left to right, as on a piano keyboard. In this scheme, the major scale is 101010110101 = 2741. This binary representation permits easy calculation of interval vectors and common tones, using logical binary operators. It also provides a perfect index for every possible combination of tones, as every scale has its own number. [9][10]


Scales may also be shown as semitones from the tonic. For instance, 0 2 4 5 7 9 11 denotes any major scale such as C–D–E–F–G–A–B, in which the first degree is, obviously, 0 semitones from the tonic (and therefore coincides with it), the second is 2 semitones from the tonic, the third is 4 semitones from the tonic, and so on. Again, this implies that the notes are drawn from a chromatic scale tuned with 12-tone equal temperament. For some fretted string instruments, such as the guitar and the bass guitar, scales can be notated in tabulature, an approach which indicates the fret number and string upon which each scale degree is played.

Non-Western scales[edit]

Equal temperament[edit]

In Western music, scale notes are often separated by equally tempered tones or semitones, creating 12 intervals per octave. Each interval separates two tones; the higher tone has an oscillation frequency of a fixed ratio (by a factor equal to the twelfth root of two, or approximately 1.059463) higher than the frequency of the lower one. A scale uses a subset consisting typically of 7 of these 12 as scale steps.

Other[edit]

Many other musical traditions use scales that include other intervals. These scales originate within the derivation of the harmonic series. Musical intervals are complementary values of the harmonic overtones series.[11] Many musical scales in the world are based on this system, except most of the musical scales from Indonesia and the Indochina Peninsulae, which are based on inharmonic resonance of the dominant metalophone and xylophone instruments.

Intra-scale intervals[edit]

Some scales use a different number of pitches. A common scale in Eastern music is the pentatonic scale, which consists of five notes that span an octave. For example, in the Chinese culture, the pentatonic scale is usually used for folk music and consists of C, D, E, G and A, commonly known as gong, shang, jue, chi and yu.[12][13]


Some scales span part of an octave; several such short scales are typically combined to form a scale spanning a full octave or more, and usually called with a third name of its own. The Turkish and Middle Eastern music has around a dozen such basic short scales that are combined to form hundreds of full-octave spanning scales. Among these scales Hejaz scale has one scale step spanning 14 intervals (of the middle eastern type found 53 in an octave) roughly similar to 3 semitones (of the western type found 12 in an octave), while Saba scale, another of these middle eastern scales, has 3 consecutive scale steps within 14 commas, i.e. separated by roughly one western semitone either side of the middle tone.


Gamelan music uses a small variety of scales including Pélog and Sléndro, none including equally tempered nor harmonic intervals. Indian classical music uses a moveable seven-note scale. Indian Rāgas often use intervals smaller than a semitone.[14] Turkish music Turkish makams and Arabic music maqamat may use quarter tone intervals.[15] In both rāgas and maqamat, the distance between a note and an inflection (e.g., śruti) of that same note may be less than a semitone.

List of musical scales and modes

Melodic pattern

Pitch circularity

Shepard tone

Barbieri, Patrizio (2008). Enharmonic Instruments and Music, 1470–1900. Latina, Italy: Il Levante Libreria Editrice.  978-88-95203-14-0.

ISBN

(2006). The Complete Thesaurus of Musical Scales (revised ed.). New York: Masaya Music Services. ISBN 978-0-9676353-0-9.

Yamaguchi, Masaya

Octave Frequency Sweep, Consonance & Dissonance

WolframTones—hear and play musical scales

Visual representation of scales from WolframTones

ScaleCoding

Database in .xls and FileMaker formats of all 2048 possible unique scales in 12 tone equal temperament + meantone alternatives.